DataX安装使用实现MySQL到MySQL数据同步

DataX安装使用实现MySQL到MySQL数据同步 DataX安装使用实现MySQL到MySQL数据同步 1.前置条件: 1.1jdk安装 jdk安装前往官网,这里我安装jdk-8u261 解压 sudo mkdir -p /opt/moud…

	DataX安装使用实现MySQL到MySQL数据同步[数据库教程]

DataX安装使用实现MySQL到MySQL数据同步

1.前置条件:

1.1jdk安装

  • jdk安装前往官网,这里我安装jdk-8u261

  • 解压

    sudo mkdir -p /opt/moudle
    sudo tar -zxvf jdk-8u261-linux-x64.tar.gz -C /opt/moudle/
    
    

    代码100分

  • 设置环境变量

    代码100分export JAVA_HOME=/opt/moudle/jdk1.8.0_261
    export JRE_HOME=${JAVA_HOME}/jre
    export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
    export PATH=${JAVA_HOME}/bin:$PATH
    
  • 刷新配置

    source /etc/profile
    
  • 检查java

    代码100分java -version
    
    # 出现下面安装成功
    java version "1.8.0_261"
    Java(TM) SE Runtime Environment (build 1.8.0_261-b12)
    Java HotSpot(TM) 64-Bit Server VM (build 25.261-b12, mixed mode)
    

1.2python安装

  • 略(官方推荐>=2.6.X)

1.3 Hadoop单机伪分布式安装

2.安装DataX

  • DataX是阿里巴巴的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。

    !技术图片

  • 下载地址:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz

  • 解压

    tar -zxvf datax.tar.gz -C /opt/software/
    
  • 运行自检脚本

    cd /opt/software/datax/
    bin/datax.py job/job.json
    
  • 出现下面界面表示成功:

技术图片

  • /opt/software/datax/job/job.json格式。
{
	"content":[
		{
			"reader":{
				"name":"streamreader",# 流式读,根据DataX定义好的设置
				"parameter":{
					"column":[#把column里所有value读到流当中
						{
							"type":"string",
							"value":"DataX"
						},
						{
							"type":"long",
							"value":19890604
						},
						{
							"type":"date",
							"value":"1989-06-04 00:00:00"
						},
						{
							"type":"bool",
							"value":true
						},
						{
							"type":"bytes",
							"value":"test"
						}
					],
					"sliceRecordCount":100000
				}
			},
			"writer":{
				"name":"streamwriter",# 流式写,根据DataX定义好的设置
				"parameter":{
					"encoding":"UTF-8",
					"print":false#打印
				}
			}
		}
	],
	"setting":{
		"errorLimit":{# errorLimit错误限制
			"percentage":0.02,# 最大容忍错误限制百分比2%
			"record":0# 容忍错误记录调试 0
		},
		"speed":{# 控制并发数:通过byte或channel控制,这里默认通过byte控制
			"byte":10485760#以 sliceRecordCount乘以byte,打印数据条数占用空间
		}
	}
}

3.基本使用

3.1从stream读取数据并打印到控制台。

  • 首先查看官方json配置模版

    # 查看 streamreader --> streamwriter 模版
    python /opt/software/datax/bin/datax.py -r streamreader -w streamwriter
    # 模版如下:
    DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
    Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.
    
    
    Please refer to the streamreader document:
         https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md 
    
    Please refer to the streamwriter document:
         https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md 
     
    Please save the following configuration as a json file and  use
         python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
    to run the job.
    {
        "job": {
            "content": [
                {
                    "reader": {
                        "name": "streamreader", 
                        "parameter": {
                            "column": [], 
                            "sliceRecordCount": ""
                        }
                    }, 
                    "writer": {
                        "name": "streamwriter", 
                        "parameter": {
                            "encoding": "", 
                            "print": true
                        }
                    }
                }
            ], 
            "setting": {
                "speed": {
                    "channel": ""
                }
            }
        }
    }
    
  • 根据模版编写json文件

    {
        "job": {
            "content": [
                {
                    "reader": {
                        "name": "streamreader", 
                        "parameter": {
                            "column": [
                                {
                                    "type":"string",
                                    "value":"xujunkai, hello world!"
                                },
                                {
                                    "type":"string",
                                    "value":"徐俊凯, 你好!"
                                },
                            ], 
                            "sliceRecordCount": "10"#打印次数
                        }
                    }, 
                    "writer": {
                        "name": "streamwriter", 
                        "parameter": {
                            "encoding": "utf-8", #编码方式utf-8
                            "print": true
                        }
                    }
                }
            ], 
            "setting": {
                "speed": {#控制并发数
                    "channel": "2"#控制并发2次-->这里因为是打印所以会sliceRecordCount乘以channel 打印20遍。如果设置为mysql真的会进行并发
                }
            }
        }
    }
    
  • 创建一个json文件,在根目录

    mkdir json
    cd json/
    vim stream2stream.json
    # 将上述内容粘贴进去
    
  • 运行job

    /opt/software/datax/bin/datax.py ./stream2stream.json
    
  • 如下图:

    技术图片

3.2从MySQL到MySQL批量插入

3.2.1预先准备工作:
  • 写入和读取方准备创建库和表

    # 创建库
    create database `testdatax` character set utf8
    # 创建表
    create table user1w(
    id int not null auto_increment,
    name varchar(10) not null,
    score int not null,
    primary key(`id`))engine=InnoDB default charset=utf8;
    
  • 编写一个简单存储过程,读取数据端插入数据:

    DELIMITER //
    create PROCEDURE add_user(in num INT)
    BEGIN
    DECLARE rowid INT DEFAULT 0;
    DECLARE name CHAR(1);
    DECLARE score INT;
    WHILE rowid < num DO
    SET rowid = rowid + 1;
    set name = SUBSTRING(‘abcdefghijklmnopqrstuvwxyz‘,ROUND(1+25*RAND()),1);
    set score= FLOOR(40 + (RAND()*60));
    insert INTO user1w (name,score) VALUES (name,score);
    END WHILE;
    END //
    DELIMITER ;
    
  • 执行插入数据

    call add_user(10000);
    
3.2.2 查看一下mysql到mysql的json配置
  • python /opt/software/datax/bin/datax.py -r mysqlreader -w mysqlwriter,json文件配置:

    {
        "job": {
            "content": [
                {
                    "reader": {
                        "name": "mysqlreader", # 读取端,根据DataX定义好的设置
                        "parameter": {
                            "column": [], # 读取端需要同步的列
                		   "splitPk": "",# 数据抽取时指定字段进行数据分片
                            "connection": [
                                {
                                    "jdbcUrl": [], #读取端连接信息
                                    "table": []# 读取端指定的表
                                }
                            ], 
                            "password": "", #读取端账户
                            "username": "", #读取端密码
                            "where": ""# 描述筛选条件
                        }
                    }, 
                    "writer": {
                        "name": "mysqlwriter", #写入端,根据DataX定义好的设置
                        "parameter": {
                            "column": [], #写入端需要同步的列
                            "connection": [
                                {
                                    "jdbcUrl": "", # 写入端连接信息
                                    "table": []# 写入端指定的表
                                }
                            ], 
                            "password": "", #写入端密码
                            "preSql": [], # 执行写入之前做的事情
                            "session": [], 
                            "username": "", #写入端账户
                            "writeMode": ""# 操作乐星
                        }
                    }
                }
            ], 
            "setting": {
                "speed": {
                    "channel": ""#指定channel数
                }
            }
        }
    }
    
  • 我的配置json:

    {
        "job": {
            "content": [
                {
                    "reader": {
                        "name": "mysqlreader", 
                        "parameter": {
                            "username": "root",
                            "password": "123"
                            "column": ["*"],
                            "splitPk": "id",
                            "connection": [
                                {
                                    "jdbcUrl": [
                                        "jdbc:mysql://读取端IP:3306/testdatax?useUnicode=true&characterEncoding=utf8"
                                    ], 
                                    "table": ["user1w"]
                                }
                            ]
                        }
                    }, 
                    "writer": {
                        "name": "mysqlwriter", 
                        "parameter": {
                            "column": ["*"], 
                            "connection": [
                                {
                                    "jdbcUrl": "jdbc:mysql://写入端IP:3306/testdatax?useUnicode=true&characterEncoding=utf8", 
                                    "table": ["user1w"]
                                }
                            ], 
                            "password": "123", 
                            "preSql": [
                                "truncate user1w"
                            ], 
                            "session": [
                                "set session sql_mode=‘ANSI‘"
                            ], 
                            "username": "root", 
                            "writeMode": "insert"
                        }
                    }
                }
            ], 
            "setting": {
                "speed": {
                    "channel": "5"
                }
            }
        }
    }
    
  • cd到datax下bin目录执行:

    python2 datax.py /root/json/mysql2mysql.json
    
  • 会打印同步数据信息完毕。更多配置见github-dataX

3.3从数据库MySQL数据导入到HDFS中

python /opt/software/datax/bin/datax.py -r mysqlreader -w mysqlwriter
  • 未完待续…

DataX安装使用实现MySQL到MySQL数据同步

原文地址:https://www.cnblogs.com/xujunkai/p/13378942.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/7081.html

(0)
上一篇 2023-03-27 16:30
下一篇 2023-03-27

相关推荐

  • Linux安装Anaconda教程

    Linux安装Anaconda教程Anaconda是一个强大的Python数据处理与科学计算平台,它包含了用于科学计算的许多最流行的Python库和工具。在本文中,我们将向您介绍如何在Linux中安装Anaconda。

    2024-09-16
    25
  • 如何使用Python安装包

    如何使用Python安装包Python是一种非常流行的编程语言,有很多好用的第三方库和工具包可以使用,使得编程工作变得更加方便和高效。在使用这些工具包之前,我们需要安装它们。因此,本文将介绍如何在Python中安装包。

    2024-08-18
    34
  • redis hash序列化_redis什么时候用hash

    redis hash序列化_redis什么时候用hashredis 的散列可以让用户将多个键值对存储到一个 redis 键里面。这里介绍一些常用命令,以及在 Yii 中的使用。 HMGET HMGET:HMGET key-name key [key …]从

    2023-03-11
    181
  • 关于测试开发之python的信息

    关于测试开发之python的信息软件测试人员能用python做的事情很多,最常见的就是下面四项:1)做自动化测试【web自动化,app自动化,接口自动化】;2)做性能测试;3)开发小工具;4)搭建测试平台。

    2023-10-31
    135
  • Python 工程师

    Python 工程师Python是一种高级编程语言,被广泛用于Web开发、科学计算、人工智能等领域,同时也逐渐成为了最受欢迎的编程语言之一。作为一名成功的Python工程师,需要掌握一系列技能和知识,如数据分析、网络编程、机器学习等。这篇文章将介绍Python工程师的职责、所需技能以及如何成为一名出色的Python工程师。

    2024-04-20
    74
  • Python中json.dumps使用教程

    Python中json.dumps使用教程JSON(JavaScript Object Notation)是一种轻量级的数据交换格式。在Python中,可以使用json.dumps()函数将Python对象转化为JSON格式的数据。

    2024-06-08
    58
  • TcaplusDB君3月17日的行业新闻汇编「终于解决」

    TcaplusDB君3月17日的行业新闻汇编「终于解决」TcaplusDB君一直密切关注着游戏行业和数据库行业的动态。以下是TcaplusDB君收集的近期的游戏行业和数据库行业的新闻,汇编整理,献给大家观看。 (本篇文章部分内容来自网络) 美国手游市场总…

    2023-04-11
    167
  • Postgresql之split_part()切割函数

    Postgresql之split_part()切割函数数据库表字段有一个格式是:1|2|3.以竖线分割的,现在想取其中的第2个,pg提供这样的函数,记录如下,以下是我的sql SELECT COUNT (*) AS “count”, …

    2023-02-05
    174

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注