伯努利不等式在线计算器
数学中的伯努利不等式是说:对实数x>-1,
在n≥1时,有 (1+x)n≥1+nx 成立;
在0≤n≤1时,有(1+x)n≤1+nx成立。
可以看到等号成立当且仅当n = 0,1,或x = 0时。伯努利不等式经常用作证明其他不等式的关键步骤。
伯努利不等式的一般式为
(1+x1+x2+x3···+xn)= -1且sign(xi) = sign(xj),即所有xi同号且大于等于-1) 当且仅当n=1时等号成立
注:x后的字母或数字为下标
伯努利不等式在线计算器 数学中的伯努利不等式是说:对实数x>-1, 在n≥1时,有 (1+x)n≥1+nx 成立; 在0≤n≤1时,有(1+x)n≤1+nx成立。 可以看到等号成立当且仅当n = 0,1,或x = 0时。伯努利不等式经常用作证明其他不等式的关键步骤。 伯努利不等式的一般式为 (1+x1+x2+x3···+xn)= -1且sign(xi) =
伯努利不等式在线计算器
数学中的伯努利不等式是说:对实数x>-1,
在n≥1时,有 (1+x)n≥1+nx 成立;
在0≤n≤1时,有(1+x)n≤1+nx成立。
可以看到等号成立当且仅当n = 0,1,或x = 0时。伯努利不等式经常用作证明其他不等式的关键步骤。
伯努利不等式的一般式为
(1+x1+x2+x3···+xn)= -1且sign(xi) = sign(xj),即所有xi同号且大于等于-1) 当且仅当n=1时等号成立
注:x后的字母或数字为下标
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://daima100.com/ji-huo-bi-ji/1798.html