大家好,我是考100分的小小码 ,祝大家学习进步,加薪顺利呀。今天说一说rdd创建有哪几种方式_redis rdb原理,希望您对编程的造诣更进一步.
RDD的详解
RDD:弹性分布式数据集,是Spark中最基本的数据抽象,用来表示分布式集合,支持分布式操作!
RDD的创建
RDD中的数据可以来源于2个地方:本地集合或外部数据源
RDD操作
分类
转换算子
Map
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Demo03Map {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf()
conf.setAppName("Demo03Map").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
//读取文件数据
val linesRDD: RDD[String] = sc.textFile("spark/data/words.txt")
//对数据进行扁平化处理
val flatRDD: RDD[String] = linesRDD.flatMap(_.split(","))
//按照单词分组
val groupRDD: RDD[(String, Iterable[String])] = flatRDD.groupBy(w => w)
//聚合
val wordsRDD: RDD[String] = groupRDD.map(kv => {
val key: String = kv._1
val words: Iterable[String] = kv._2
key + "," + words.size
})
//分组+聚合
val mapRDD1: RDD[(String, Int)] = flatRDD.map((_, 1))
val words1: RDD[(String, Int)] = mapRDD1.reduceByKey(_ + _)
////分组+聚合
val mapRDD2: RDD[(String, Int)] = flatRDD.map((_, 1))
val words2: RDD[(String, Iterable[Int])] = mapRDD2.groupByKey()
val wordSum: RDD[(String, Int)] = words2.mapValues(_.size)
wordSum.foreach(println)
//输出
wordsRDD.foreach(println)
words1.foreach(println)
}
}
flatMap(数据扁平化处理)
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Demo04FlatMap {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("Demo04FlatMap").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
val linesRDD: RDD[String] = sc.parallelize(List("java,scala,python", "map,java,scala"))
//扁平化处理
val flatRDD: RDD[String] = linesRDD.flatMap(_.split(","))
flatRDD.foreach(println)
}
}
Mappartitions
map和mapPartitions区别
1)map:每次处理一条数据
2)mapPartitions:每次处理一个分区数据
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Demo05MapPartition {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("Demo05MapPartition").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
val stuRDD: RDD[String] = sc.textFile("spark/data/words.txt",3)
stuRDD.mapPartitions(rdd => {
println("map partition")
// 按分区去处理数据
rdd.map(line => line.split(",")(1))
}).foreach(println)
}
}
fliter 过滤
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Demo06Filter {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("Demo05MapPartition").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
val linesRDD: RDD[Int] = sc.parallelize(List(1, 2, 3, 4, 5))
//过滤,转换算子
linesRDD.filter(kv => {
kv % 2 == 1
}).foreach(println)
}
}
sample 取样
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
object Demo07Sample {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("Demo05MapPartition").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
/**
* sample:对数据取样
* withReplacement 有无放回
* fraction 抽样比例
* withReplacement:表示抽出样本后是否在放回去,true表示会放回去
* 这也就意味着抽出的样本可能有重复
* fraction :抽出多少,这是一个double类型的参数,0-1之间,eg:0.3表示抽出30%
*/
val stuRDD: RDD[String] = sc.textFile("spark/data/students.txt",3)
stuRDD.sample(withReplacement = true,0.1).foreach(println)
}
}
union 将相同结结构的数据连接到一起
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Demo08Union {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("Demo05MapPartition").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
/**union
* 将两个相同结构的数据连接在一起
*/
val lineRDD1: RDD[String] = sc.parallelize(List("java,scala", "data,python"))
val lineRDD2: RDD[String] = sc.parallelize(List("spark,scala", "java,python"))
println(lineRDD1.getNumPartitions)
val unionRDD: RDD[String] = lineRDD1.union(lineRDD2)
println(unionRDD.getNumPartitions)
unionRDD.foreach(println)
}
}
mappatitionWIthindex
//mapPartitionsWithIndex也是一个转换算子
// 会在处理每一个分区的时候获得一个index
//可以选择的执行的分区
stuRDD.mapPartitionsWithIndex((index, rdd) => {
println("当前遍历的分区:" + index)
// 按分区去处理数据
rdd.map(line => line.split(",")(1))
}).foreach(println)
join 将数据按照相同key进行关联(数据必须是(K,V))
import java.io
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Demo09Join {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("Demo05MapPartition").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
// 构建K-V格式的RDD
val tuple2RDD1: RDD[(String, String)] = sc.parallelize(List(("001", "张三"), "002" -> "小红", "003" -> "小明"))
val tuple2RDD2: RDD[(String, Int)] = sc.parallelize(List(("001", 20), "002" -> 22, "003" -> 21))
val tuple2RDD3: RDD[(String, String)] = sc.parallelize(List(("001", "男"), "002" -> "女"))
//将文件进行join
val joinRDD: RDD[(String, (String, Int))] = tuple2RDD1.join(tuple2RDD2)
joinRDD.map(kv => {
val i: String = kv._1
val j: String = kv._2._1
val k: Int = kv._2._2
i + "," + j + "," + k
}).foreach(println)
//第二种方式
joinRDD.map {
case (id: String, (name: String, age: Int)) => id + "*" + name + "*" + age
}.foreach(println)
val leftJoinRDD: RDD[(String, (String, Option[String]))] = tuple2RDD1.leftOuterJoin(tuple2RDD3)
leftJoinRDD.map {
//存在关联
case (id: String, (name: String, Some(gender))) =>
id + "*" + name + "*" + gender
//不存在关联
case (id: String, (name: String, None)) =>
id + "*" + name + "*" + "_"
}
}
}
groupByKey 将kv格式的数据进行key的聚合
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Demo10GroupByKey {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("Demo10GroupByKey").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
/**
* groupBy 指定分组的字段进行分组
*/
// 统计班级人数
val linesRDD: RDD[String] = sc.textFile("spark/data/students.txt")
linesRDD.groupBy(word => word.split(",")(4))
.map(kv => {
val key = kv._1
val wordsCnt = kv._2.size
key + "," + wordsCnt
}).foreach(println)
val linesMap: RDD[(String, String)] = linesRDD.map(lines => (lines.split(",")(4), lines))
//按照key进行分组
linesMap.groupByKey()
.map(lines=>{
val key = lines._1
val wordsCnt: Int = lines._2.size
key+","+wordsCnt
}).foreach(println)
}
}
ReduceByKey
reduceByKey 需要接收一个聚合函数
首先会对数据按key分组 然后在组内进行聚合(一般是加和,也可以是Max、Min之类的操作)
相当于 MR 中的combiner
可以在Map端进行预聚合,减少shuffle过程需要传输的数据量,以此提高效率
相对于groupByKey来说,效率更高,但功能更弱
幂等操作
y = f(x) = f(y) = f(f(x))
reducebyKey与groupbykey的区别
reduceByKey:具有预聚合操作
groupByKey:没有预聚合
在不影响业务逻辑的前提下,优先采用reduceByKey。
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Demo11ReduceByKey {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("Demo11ReduceByKey").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
val linesRDD: RDD[String] = sc.textFile("spark/data/students.txt")
//统计班级人数
linesRDD.map(lines => (lines.split(",")(4), lines))
.groupByKey()
.map(kv => {
val key = kv._1
val cnt = kv._2.size
key + "" + cnt
}).foreach(println)
//ReduceByKey
/**
* reduceByKey 需要接收一个聚合函数
* 首先会对数据按key分组 然后在组内进行聚合(一般是加和,也可以是Max、Min之类的操作)
* 相当于 MR 中的combiner
* 可以在Map端进行预聚合,减少shuffle过程需要传输的数据量,以此提高效率
* 相对于groupByKey来说,效率更高,但功能更弱
* 幂等操作
* y = f(x) = f(y) = f(f(x))
*/
linesRDD.map(lines=>(lines.split(",")(4),1))
.reduceByKey(_+_)
.foreach(println)
}
}
sort 排序,默认升序
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
object Demo12Sort {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("Demo12Sort").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
val linesRDD: RDD[String] = sc.textFile("spark/data/students.txt")
/**
* sortBy 转换算子
* 指定按什么排序 默认升序
*
* sortByKey 转换算子
* 需要作用在KV格式的RDD上,直接按key排序 默认升序
*/
linesRDD.sortBy(lines => lines.split(",")(2), ascending = false) //按照年纪降序
.take(10) //转换算子打印十行
.foreach(println)
val mapRDD: RDD[(String, String)] = linesRDD.map(l => (l.split(",")(2), l))
mapRDD.sortByKey(ascending = false)
.take(10)
.foreach(println)
}
}
Mapvalue
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Demo13MapValue {
def main(args: Array[String]): Unit = {
/**
* mapValues 转换算子
* 需要作用在K—V格式的RDD上
* 传入一个函数f
* 将RDD的每一条数据的value传给函数f,key保持不变
* 数据规模也不会改变
*/
val conf: SparkConf = new SparkConf().setAppName("Demo13MapValue").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
val linesRDD: RDD[(String, Int)] = sc.parallelize(List(("zs", 10), ("zzw", 34), ("lm", 18)))
linesRDD.mapValues(lines=>lines*2)
.foreach(println)
}
行为算子
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Demo14Action {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setAppName("****").setMaster("local")
val sc: SparkContext = new SparkContext(conf)
val linesRDD: RDD[String] = sc.textFile("spark/data/students.txt")
linesRDD.take(10)// take 取出前n条数据 相当于limit
.foreach(println) //这里的foreach不是行为算子,是take里面的方法
// count
// 返回RDD的数据量的多少
println(linesRDD.count())
// collect
// 将RDD转换为Scala中的Array
// 注意数据量的大小 容易OOM
val collectRDD: Array[String] = linesRDD.collect()
collectRDD.take(10)
.foreach(println)
// reduce 全局聚合
// select sum(age) from student group by 1
val i = linesRDD.map(lines => lines.split(",")(2).toInt)
.reduce(_ + _)
println(i)
//save
linesRDD.sample(withReplacement = false,0.2)
.saveAsTextFile("spark/data/save")
}
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/5724.html