SQL 窗口函数简介[通俗易懂]

SQL 窗口函数简介[通俗易懂]学习重点 窗口函数可以进行排序、生成序列号等一般的聚合函数无法实现的高级操作。 理解 PARTITION BY 和 ORDER BY 这两个关键字的含义十分重要。 一、什么是窗口函数 窗口函数也称为

SQL 窗口函数简介

目录
  • 一、什么是窗口函数
  • 二、窗口函数的语法
    • 2.1 能够作为窗口函数使用的函数
  • 三、语法的基本使用方法——使用 RANK 函数
  • 四、无需指定 PARTITION BY
  • 五、专用窗口函数的种类
  • 六、窗口函数的适用范围
  • 七、作为窗口函数使用的聚合函数
  • 八、计算移动平均
    • 8.1 指定框架(汇总范围)
    • 8.2 将当前记录的前后行作为汇总对象
  • 九、两个 ORDER BY
  • 请参阅

学习重点

窗口函数可以进行排序、生成序列号等一般的聚合函数无法实现的高级操作。

理解 PARTITION BYORDER BY 这两个关键字的含义十分重要。

一、什么是窗口函数

窗口函数也称为 OLAP 函数 [1]。为了让大家快速形成直观印象,才起了这样一个容易理解的名称(“窗口”的含义我们将在随后进行说明)。

KEYWORD

  • 窗口函数

  • OLAP 函数

OLAP 是 OnLine Analytical Processing 的简称,意思是对数据库数据进行实时分析处理。例如,市场分析、创建财务报表、创建计划等日常性商务工作。

KEYWORD

  • OLAP

窗口函数就是为了实现 OLAP 而添加的标准 SQL 功能 [2]

专栏

窗口函数的支持情况

很多数据库相关工作者过去都会有这样的想法:“好不容易将业务数据插入到了数据库中,如果能够使用 SQL 对其进行实时分析的话,一定会很方便吧。”但是关系数据库提供支持 OLAP 用途的功能仅>仅只有 10 年左右的时间。

其中的理由有很多,这里我们就不一一介绍了。大家需要注意的是,还有一部分 DBMS 并不支持这样的新功能。

本节将要介绍的窗口函数也是其中之一,截至 2016 年 5 月,Oracle、SQL Server、DB2、PostgreSQL 的最新版本都已经支持了该功能,但是 MySQL 的最新版本 5.7 还是不支持该功能。

通过前面的学习,我们已经知道各个 DBMS 都有自己支持的特定语法和不支持的语法。标准 SQL 添加新功能的时候也会遇到同样的问题 [3]

二、窗口函数的语法

接下来,就让我们通过示例来学习窗口函数吧。窗口函数的语法有些复杂。

语法 1 窗口函数

<窗口函数> OVER ([PARTITION BY <列清单>]
                         ORDER BY <排序用列清单>)

[] 中的内容可以省略。

其中重要的关键字是 PARTITION BYORDER BY,理解这两个关键字的作用是帮助我们理解窗口函数的关键。

2.1 能够作为窗口函数使用的函数

在学习 PARTITION BYORDER BY 之前,我们先来列举一下能够作为窗口函数使用的函数。窗口函数大体可以分为以下两种。

① 能够作为窗口函数的聚合函数(SUMAVGCOUNTMAXMIN

RANKDENSE_RANKROW_NUMBER专用窗口函数

KEYWORD

  • 专用窗口函数

② 中的函数是标准 SQL 定义的 OLAP 专用函数,本教程将其统称为“专用窗口函数”。从这些函数的名称可以很容易看出其 OLAP 的用途。

其中 ① 的部分是我们在 对表进行聚合查询 中学过的聚合函数。将聚合函数书写在“语法 1”的“<窗口函数>”中,就能够当作窗口函数来使用了。总之,聚合函数根据使用语法的不同,可以在聚合函数和窗口函数之间进行转换。

三、语法的基本使用方法——使用 RANK 函数

首先让我们通过专用窗口函数 RANK 来理解一下窗口函数的语法吧。正如其名称所示,RANK 是用来计算记录排序的函数。

KEYWORD

  • RANK 函数

例如,对于之前使用过的 Product 表中的 8 件商品,让我们根据不同的商品种类(product_type),按照销售单价(sale_price)从低到高的顺序排序,结果如下所示。

执行结果

product_name | product_type | sale_price | ranking
-------------+--------------+------------+--------
 叉子        | 厨房用具      |        500 |       1
 擦菜板      | 厨房用具      |        880 |       2
 菜刀        | 厨房用具      |       3000 |       3
 高压锅      | 厨房用具      |       6800 |       4
 T恤衫       | 衣服          |       1000 |       1
 运动T恤     | 衣服          |       4000 |       2
 圆珠笔      | 办公用品      |        100 |       1
 打孔器      | 办公用品      |        500 |       2

以厨房用具为例,销售单价最便宜的“叉子”排在第 1 位,最贵的“高压锅”排在第 4 位,确实按照我们的要求进行了排序。

能够得到上述结果的 SELECT 语句请参考代码清单 1。

代码清单 1 根据不同的商品种类,按照销售单价从低到高的顺序创建排序表

Oracle SQL Server DB2 PostgreSQL

SELECT product_name, product_type, sale_price,
       RANK () OVER (PARTITION BY product_type
                          ORDER BY sale_price) AS ranking
  FROM Product;

PARTITION BY 能够设定排序的对象范围。本例中,为了按照商品种类进行排序,我们指定了 product_type

ORDER BY 能够指定按照哪一列、何种顺序进行排序。为了按照销售单价的升序进行排列,我们指定了 sale_price。此外,窗口函数中的 ORDER BYSELECT 语句末尾的 ORDER BY 一样,可以通过关键字 ASC/DESC 来指定升序和降序。省略该关键字时会默认按照 ASC,也就是升序进行排序。本例中就省略了上述关键字 [4]

KEYWORD

  • PARTITION BY 子句

  • ORDER BY 子句

通过图 1,我们就很容易理解 PARTITION BYORDER BY 的作用了。如图所示,PARTITION BY 在横向上对表进行分组,而 ORDER BY 决定了纵向排序的规则。

PARTITION BY 和ORDER BY 的作用

图 1 PARTITION BY 和ORDER BY 的作用

窗口函数兼具之前我们学过的 GROUP BY 子句的分组功能以及 ORDER BY 子句的排序功能。但是,PARTITION BY 子句并不具备 GROUP BY 子句的汇总功能。因此,使用 RANK 函数并不会减少原表中记录的行数,结果中仍然包含 8 行数据。

法则 1

窗口函数兼具分组和排序两种功能。

通过 PARTITION BY 分组后的记录集合称为窗口。此处的窗口并非“窗户”的意思,而是代表范围。这也是“窗口函数”名称的由来。[5]

KEYWORD

  • 窗口

法则 2

通过 PARTITION BY 分组后的记录集合称为“窗口”。

此外,各个窗口在定义上绝对不会包含共通的部分。就像刀切蛋糕一样,干净利落。这与通过 GROUP BY 子句分割后的集合具有相同的特征。

四、无需指定 PARTITION BY

使用窗口函数时起到关键作用的是 PARTITION BYGROUP BY。其中,PARTITION BY 并不是必需的,即使不指定也可以正常使用窗口函数。

那么就让我们来确认一下不指定 PARTITION BY 会得到什么样的结果吧。这和使用没有 GROUP BY 的聚合函数时的效果一样,也就是将整个表作为一个大的窗口来使用。

事实胜于雄辩,下面就让我们删除代码清单 1 中 SELECT 语句的 PARTITION BY 试试看吧(代码清单 2)。

代码清单 2 不指定 PARTITION BY

Oracle SQL Server DB2 PostgreSQL

SELECT product_name, product_type, sale_price,
       RANK () OVER (ORDER BY sale_price) AS ranking
  FROM Product;

上述 SELECT 语句的结果如下所示。

执行结果

product_name | product_type | sale_price | ranking
-------------+--------------+------------+--------
 圆珠笔      | 办公用品     |         100 |       1
 叉子        | 厨房用具     |         500 |       2
 打孔器      | 办公用品     |         500 |       2
 擦菜板      | 厨房用具     |         880 |       4
 T恤衫       | 衣服         |        1000 |       5
 菜刀        | 厨房用具     |        3000 |       6
 运动T恤     | 衣服         |        4000 |       7
 高压锅      | 厨房用具     |        6800 |       8

之前我们得到的是按照商品种类分组后的排序,而这次变成了全部商品的排序。像这样,当希望先将表中的数据分为多个部分(窗口),再使用窗口函数时,可以使用 PARTITION BY 选项。

五、专用窗口函数的种类

从上述结果中我们可以看到,“打孔器”和“叉子”都排在第 2 位,而之后的“擦菜板”跳过了第 3 位,直接排到了第 4 位,这也是通常的排序方法,但某些情况下可能并不希望跳过某个位次来进行排序。

这时可以使用 RANK 函数之外的函数来实现。下面就让我们来总结一下具有代表性的专用窗口函数吧。

  • RANK 函数

    计算排序时,如果存在相同位次的记录,则会跳过之后的位次。

    例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、4 位……

  • DENSE_RANK 函数

    同样是计算排序,即使存在相同位次的记录,也不会跳过之后的位次。

    例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、2 位……

  • ROW_NUMBER 函数

    赋予唯一的连续位次。

    例)有 3 条记录排在第 1 位时:1 位、2 位、3 位、4 位……

KEYWORD

  • RANK 函数

  • DENSE_RANK 函数

  • ROW_NUMBER 函数

除此之外,各 DBMS 还提供了各自特有的窗口函数。上述 3 个函数(对于支持窗口函数的 DBMS 来说)在所有的 DBMS 中都能够使用。下面就让我们来比较一下使用这 3 个函数所得到的结果吧(代码清单 3)。

代码清单 3 比较 RANKDENSE_RANKROW_NUMBER 的结果

Oracle SQL Server DB2 PostgreSQL

SELECT product_name, product_type, sale_price,
     RANK () OVER (ORDER BY sale_price) AS ranking,
     DENSE_RANK () OVER (ORDER BY sale_price) AS dense_ranking,
     ROW_NUMBER () OVER (ORDER BY sale_price) AS row_num
 FROM Product;

执行结果

执行结果

将结果中的 ranking 列和 dense_ranking 列进行比较可以发现,dense_ranking 列中有连续 2 个第 2 位,这和 ranking 列的情况相同。但是接下来的“擦菜板”的位次并不是第 4 而是第 3。这就是使用 DENSE_RANK 函数的效果了。

此外,我们可以看到,在 row_num 列中,不管销售单价(sale_price)是否相同,每件商品都会按照销售单价从低到高的顺序得到一个连续的位次。销售单价相同时,DBMS 会根据适当的顺序对记录进行排列。想为记录赋予唯一的连续位次时,就可以像这样使用 ROW_NUMBER 来实现。

使用 RANKROW_NUMBER 时无需任何参数,只需要像 RANK() 或者 ROW_NUMBER() 这样保持括号中为空就可以了。这也是专用窗口函数通常的使用方式,请大家牢记。这一点与作为窗口函数使用的聚合函数有很大的不同,之后我们将会详细介绍。

法则 3

由于专用窗口函数无需参数,因此通常括号中都是空的。

六、窗口函数的适用范围

目前为止我们学过的函数大部分都没有使用位置的限制,最多也就是在 WHERE 子句中使用聚合函数时会有些注意事项。但是,使用窗口函数的位置却有非常大的限制。更确切地说,窗口函数只能书写在一个特定的位置。

这个位置就是 SELECT 子句之中。反过来说,就是这类函数不能在 WHERE 子句或者 GROUP BY 子句中使用。[6]

虽然我们可以把它当作一种规则死记硬背下来,但是为什么窗口函数只能在 SELECT 子句中使用呢(也就是不能在 WHERE 子句或者 GROUP BY 子句中使用)?下面我们就来简单说明一下其中的理由。

其理由就是,在 DBMS 内部,窗口函数是对 WHERE 子句或者 GROUP BY 子句处理后的“结果”进行的操作。大家仔细想一想就会明白,在得到用户想要的结果之前,即使进行了排序处理,结果也是错误的。在得到排序结果之后,如果通过 WHERE 子句中的条件除去了某些记录,或者使用 GROUP BY 子句进行了汇总处理,那好不容易得到的排序结果也无法使用了。[7]

正是由于这样的原因,SELECT 子句之外“使用窗口函数是没有意义的”,所以在语法上才会有这样的限制。

七、作为窗口函数使用的聚合函数

前面给大家介绍了使用专用窗口函数的示例,下面我们再来看一看把之前学过的 SUM 或者 AVG 等聚合函数作为窗口函数使用的方法。

所有的聚合函数都能用作窗口函数,其语法和专用窗口函数完全相同。但大家可能对所能得到的结果还没有一个直观的印象,所以我们还是通过具体的示例来学习。下面我们先来看一个将 SUM 函数作为窗口函数使用的例子(代码清单 4)。

代码清单 4 将 SUM 函数作为窗口函数使用

Oracle SQL Server DB2 PostgreSQL

SELECT product_id, product_name, sale_price,
    SUM (sale_price) OVER (ORDER BY product_id) AS current_sum
  FROM Product;

执行结果

 product_id | product_name | sale_price | current_sum
------------+--------------+------------+------------
 0001       | T恤衫        |       1000 |        1000   ←1000
 0002       | 打孔器       |        500 |        1500   ←1000+500
 0003       | 运动T恤      |       4000 |        5500   ←1000+500+4000
 0004       | 菜刀         |       3000 |        8500   ←1000+500+4000+3000
 0005       | 高压锅       |       6800 |       15300              ·
 0006       | 叉子         |        500 |       15800              ·
 0007       | 擦菜板       |        880 |       16680              ·
 0008       | 圆珠笔       |        100 |       16780              ·

使用 SUM 函数时,并不像 RANK 或者 ROW_NUMBER 那样括号中的内容为空,而是和之前我们学过的一样,需要在括号内指定作为汇总对象的列。本例中我们计算出了销售单价(sale_price)的合计值(current_sum)。

但是我们得到的并不仅仅是合计值,而是按照 ORDER BY 子句指定的 product_id 的升序进行排列,计算出商品编号“小于自己”的商品的销售单价的合计值。因此,计算该合计值的逻辑就像金字塔堆积那样,一行一行逐渐添加计算对象。在按照时间序列的顺序,计算各个时间的销售额总额等的时候,通常都会使用这种称为累计的统计方法。

KEYWORD

  • 累计

使用其他聚合函数时的操作逻辑也和本例相同。例如,使用 AVG 来代替 SELECT 语句中的 SUM(代码清单 5)。

代码清单 5 将 AVG 函数作为窗口函数使用

Oracle SQL Server DB2 PostgreSQL

SELECT product_id, product_name, sale_price,
     AVG (sale_price) OVER (ORDER BY product_id) AS current_avg
  FROM Product;

执行结果

product_id | product_name | sale_price |     current_avg
-----------+--------------+------------+-----------------------
 0001      | T恤衫        |       1000 | 1000.0000000000000000 ←(1000)/1
 0002      | 打孔器       |        500 | 750.0000000000000000  ←(1000+500)/2
 0003      | 运动T恤      |       4000 | 1833.3333333333333333 ←(1000+500+4000)/3
 0004      | 菜刀         |       3000 | 2125.0000000000000000 ←(1000+500+4000+3000)/4
 0005      | 高压锅       |       6800 | 3060.0000000000000000 ←(1000+500+4000+3000+6800)/5
 0006      | 叉子         |        500 | 2633.3333333333333333               ·
 0007      | 擦菜板       |        880 | 2382.8571428571428571               ·
 0008      | 圆珠笔       |        100 | 2097.5000000000000000               ·

从结果中我们可以看到,current_avg 的计算方法确实是计算平均值的方法,但作为统计对象的却只是“排在自己之上”的记录。像这样以“自身记录(当前记录)”作为基准进行统计,就是将聚合函数当作窗口函数使用时的最大特征。

KEYWORD

  • 当前记录

八、计算移动平均

窗口函数就是将表以窗口为单位进行分割,并在其中进行排序的函数。其实其中还包含在窗口中指定更加详细的汇总范围的备选功能,该备选功能中的汇总范围称为框架

KEYWORD

  • 框架

其语法如代码清单 6 所示,需要在 ORDER BY 子句之后使用指定范围的关键字。

代码清单 6 指定“最靠近的 3 行”作为汇总对象

Oracle SQL Server DB2 PostgreSQL

SELECT product_id, product_name, sale_price,
       AVG (sale_price) OVER (ORDER BY product_id
                               ROWS 2 PRECEDING) AS moving_avg
  FROM Product;

执行结果(在 DB2 中执行)

product_id    product_name    sale_price     moving_avg
-----------   -------------  -------------   ------------
 0001         T恤衫                 1000           1000 ←(1000)/1
 0002         打孔器                 500            750 ←(1000+500)/2
 0003         运动T恤               4000           1833 ←(1000+500+4000)/3
 0004         菜刀                  3000           2500 ←(500+4000+3000)/3
 0005         高压锅                6800           4600 ←(4000+3000+6800)/3
 0006         叉子                   500           3433          ·
 0007         擦菜板                 880           2726          ·
 0008         圆珠笔                 100            493          ·

8.1 指定框架(汇总范围)

我们将上述结果与之前的结果进行比较,可以发现商品编号为“0004”的“菜刀”以下的记录和窗口函数的计算结果并不相同。这是因为我们指定了框架,将汇总对象限定为了“最靠近的 3 行”。

这里我们使用了 ROWS(“行”)和 PRECEDING(“之前”)两个关键字,将框架指定为“截止到之前 ~ 行”,因此“ROWS 2 PRECEDING”就是将框架指定为“截止到之前 2 行”,也就是将作为汇总对象的记录限定为如下的“最靠近的 3 行”。

KEYWORD

  • ROWS 关键字

  • PRECEDING 关键字

  • 自身(当前记录)

  • 之前 1 行的记录

  • 之前 2 行的记录

也就是说,由于框架是根据当前记录来确定的,因此和固定的窗口不同,其范围会随着当前记录的变化而变化。

将框架指定为截止到当前记录之前 2 行(最靠近的 3 行)

图 2 将框架指定为截止到当前记录之前 2 行(最靠近的 3 行)

如果将条件中的数字变为“ROWS 5 PRECEDING”,就是“截止到之前 5 行”(最靠近的 6 行)的意思。

这样的统计方法称为移动平均(moving average)。由于这种方法在希望实时把握“最近状态”时非常方便,因此常常会应用在对股市趋势的实时跟踪当中。

使用关键字 FOLLOWING(“之后”)替换 PRECEDING,就可以指定“截止到之后~ 行”作为框架了(图 3)。

KEYWORD

  • 移动平均

  • FOLLOWING 关键字

将框架指定为截止到当前记录之后 2 行(最靠近的 3 行)

图 3 将框架指定为截止到当前记录之后 2 行(最靠近的 3 行)

8.2 将当前记录的前后行作为汇总对象

如果希望将当前记录的前后行作为汇总对象时,就可以像代码清单 7 那样,同时使用 PRECEDING(“之前”)和 FOLLOWING(“之后”)关键字来实现。

代码清单 7 将当前记录的前后行作为汇总对象

Oracle SQL Server DB2 PostgreSQL

SELECT product_id, product_name, sale_price,
       AVG (sale_price) OVER (ORDER BY product_id
                               ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS moving_avg
  FROM Product;

执行结果(在 DB2 中执行)

product_id    product_name    sale_price    moving_avg
-----------   -------------   -----------   -----------
 0001         T恤衫                 1000           750   ←(1000+500)/2
 0002         打孔器                 500          1833   ←(1000+500+4000)/3
 0003         运动T恤               4000          2500   ←(500+4000+3000)/3
 0004         菜刀                  3000          4600   ←(4000+3000+6800)/3
 0005         高压锅                6800          3433             ·
 0006         叉子                   500          2726             ·
 0007         擦菜板                 880           493             ·
 0008         圆珠笔                 100           490             ·

在上述代码中,我们通过指定框架,将“1 PRECEDING”(之前 1 行)和“1 FOLLOWING”(之后 1 行)的区间作为汇总对象。具体来说,就是将如下 3 行作为汇总对象来进行计算(图 4)。

  • 之前 1 行的记录

  • 自身(当前记录)

  • 之后 1 行的记录

如果能够熟练掌握框架功能,就可以称为窗口函数高手了。

将框架指定为当前记录及其前后 1 行

图 4 将框架指定为当前记录及其前后 1 行

九、两个 ORDER BY

最后我们来介绍一下使用窗口函数时与结果形式相关的注意事项,那就是记录的排列顺序。因为使用窗口函数时必须要在 OVER 子句中使用 ORDER BY,所以可能有读者乍一看会觉得结果中的记录会按照该 ORDER BY 指定的顺序进行排序。

但其实这只是一种错觉。OVER 子句中的 ORDER BY 只是用来决定窗口函数按照什么样的顺序进行计算的,对结果的排列顺序并没有影响。因此也有可能像代码清单 8 那样,得到一个记录的排列顺序比较混乱的结果。有些 DBMS 也可以按照窗口函数的 ORDER BY 子句所指定的顺序对结果进行排序,但那也仅仅是个例而已。

代码清单 8 无法保证如下 SELECT 语句的结果的排列顺序

Oracle SQL Server DB2 PostgreSQL

SELECT product_name, product_type, sale_price,
       RANK () OVER (ORDER BY sale_price) AS ranking
  FROM Product;

有可能会得到下面这样的结果

 product_name | product_type | sale_price | ranking
--------------+--------------+------------+--------
 菜刀         | 厨房用具      |       3000 |       6
 打孔器       | 办公用品      |        500 |       2
 运动T恤      | 衣服          |       4000 |       7
 T恤衫        | 衣服          |       1000 |       5
 高压锅       | 厨房用具      |       6800 |       8
 叉子         | 厨房用具      |        500 |       2
 擦菜板       | 厨房用具      |        880 |       4
 圆珠笔       | 办公用品      |        100 |       1

那么,如何才能让记录切实按照 ranking 列的升序进行排列呢?

答案非常简单。那就是在 SELECT 语句的最后,使用 ORDER BY 子句进行指定(代码清单 9)。这样就能保证 SELECT 语句的结果中记录的排列顺序了,除此之外也没有其他办法了。

代码清单 9 在语句末尾使用 ORDER BY 子句对结果进行排序

Oracle SQL Server DB2 PostgreSQL

SELECT product_name, product_type, sale_price,
       RANK () OVER (ORDER BY sale_price) AS ranking
  FROM Product
 ORDER BY ranking;

也许大家会觉得在一条 SELECT 语句中使用两次 ORDER BY 会有点别扭,但是尽管这两个 ORDER BY 看上去是相同的,但其实它们的功能却完全不同。

法则 5

将聚合函数作为窗口函数使用时,会以当前记录为基准来决定汇总对象的记录。

请参阅

  • 窗口函数
  • GROUPING 运算符

(完)


  1. 在 Oracle 和 SQL Server 中称为分析函数。 ↩︎

  2. 目前 MySQL 还不支持窗口函数。详细信息请参考专栏“窗口函数的支持情况”。 ↩︎

  3. 随着时间推移,标准 SQL 终将能够在所有的 DBMS 中进行使用。 ↩︎

  4. 其所要遵循的规则与 SELECT 语句末尾的 ORDER BY 子句完全相同。 ↩︎

  5. 从词语意思的角度考虑,可能“组”比“窗口”更合适一些,但是在 SQL 中,“组”更多的是用来特指使用 GROUP BY 分割后的记录集合,因此,为了避免混淆,使用 PARTITION BY 时称为窗口。 ↩︎

  6. 语法上,除了 SELECT 子句,ORDER BY 子句或者 UPDATE 语句的 SET 子句中也可以使用。但因为几乎没有实际的业务示例,所以开始的时候大家只要记得“只能在 SELECT 子句中使用”就可以了。 ↩︎

  7. 反之,之所以在 ORDER BY 子句中能够使用窗口函数,是因为 ORDER BY 子句会在 SELECT 子句之后执行,并且记录保证不会减少。 ↩︎

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/5661.html

(0)
上一篇 2023-04-30
下一篇 2023-04-30

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注