阿里慢SQL治理5大经典案例[亲测有效]

阿里慢SQL治理5大经典案例[亲测有效]菜鸟供应链金融慢sql治理已经有一段时间,自己负责的应用持续很长时间没有慢sql告警,现阶段在推进组内其他成员治理应用慢sql。这里把治理过程中的一些实践拿出来分享下。

阿里慢SQL治理5大经典案例

菜鸟供应链金融慢sql治理已经有一段时间,自己负责的应用持续很长时间没有慢sql告警,现阶段在推进组内其他成员治理应用慢sql。这里把治理过程中的一些实践拿出来分享下。

一、全表扫描

1、案例

SELECT count(*) AS tmp_count FROM (

SELECT * FROM `XXX_rules` WHERE 1 = 1 ORDER BY gmt_create DESC ) a

2、溯源

在分页查询治理的文章里已经介绍过我们系统旧的分页查询逻辑,上面的查询sql明显就是分页查询获取总记录数,通过XXX_rules表的分页查询接口溯源,找到发起调用的页面是我们小二后台的一个操作商家准入的页面,页面打开后直接调用分页查询接口,除了分页参数,不传入其他任何查询参数,导致扫描全表。

3、分析

灵魂拷问:为什么要扫描全表?全表数据展示到页面,花里胡哨的数据有用吗?

调研:和经常使用这个页面的运营聊后了解到,打开页面查询出的全表数据对运营是没有用的,他们根本不看这些数据。运营的操作习惯是拿到商家id,在页面查询框中输入商家id,查到商家数据后进行操作。

4、解决方案

由此优化方案就很明朗了:打开页面时不直接查询全量数据,等运营输入商家id后,将商家id作为参数进行查询。XXX_rules表中,商家id这一常用查询条件设置为索引,再结合分页查询优化,全表扫描慢sql得以解决。

优化后的小二后台页面如下:

阿里慢SQL治理5大经典案例[亲测有效]

打开页面时未查询任何数据,查询条件商家账户为必填项。

优化后的sql为:

SELECT count(*) AS tmp_count FROM (

SELECT * FROM `xxx_rules` WHERE 1 = 1 AND `rule_value` = “2928597xxx” ) a

执行EXPLAIN得到结果如下:

阿里慢SQL治理5大经典案例[亲测有效]

可以看到命中了索引,扫描行数为3,查询速度明显提高。

5、思考

扫描全表治理简单来说就是加入查询条件,命中索引,去除全表扫描查询,虽然有些粗暴,但并不是没有道理。实际业务场景中,很少有要扫描全表获取全部数据的情况,限制调用上游必须传入查询条件,且该查询条件能命中索引,能很大程度上避免慢sql。

另外,再引申下,XXX_rules初始的用意是准入表,记录金融货主维度的准入情况,最多也就几千条数据,但是很多同事将这张表理解为规则表,写入很多业务相关规则,导致这个表膨胀到一百多万条数据,表不clean了。这就涉及到数据表的设计使用,明确表的使用规范,不乱写入数据,能给后期维护带来很大的便利。

二、索引混乱

1、示例

阿里慢SQL治理5大经典案例[亲测有效]

2、分析

除了时间、操作人字段,XXX_rules表就rule_name、rule_value、status、product_code四个字段,表的索引对这四个字段做各种排列组合。存在如下问题:

1)rule_name离散度不高,放在索引首位不合适;

2)前三个索引重合度很高;

显然是对索引的命中规则不够了解。XXX_rules表很多业务有定时任务对其写入删除,索引多、混乱,对性能有很大的影响。

高性能的索引有哪些,再来回顾下:

①独立的列:索引列不能是表达式的一部分;

②选择区分度高的列作为索引;

③选择合适的索引列顺序:将选择性高的索引列放在最前列;

④覆盖索引:查询的列均在索引中,不需要回查聚簇索引;

⑤使用索引扫描来做排序;

⑥在遵守最左前缀的原则下,尽量扩展索引,而不是创建索引。

但凡记得第规则,也不至于把索引建成这样。

3、治理

对索引进行整合如下:

阿里慢SQL治理5大经典案例[亲测有效]

系统中有很多任务拉取整个产品下的准入记录,然后进行处理,所以将区分度较高的product_code放在索引首位,然后添加rule_name、status字段到索引里,进一步过滤数据,减少扫描行数,避免慢sql。针对常用的rule_value查询条件,可以命中UK,因此不用单独建立索引。

三、非必要排序

1、问题描述

很多业务逻辑中,需要拉取满足某个条件的记录列表,查询的sql语句带有order by,记录比较多的情况,排序代价往往很大,但是查询出来的记录是否有序对业务逻辑没有影响,比如分页治理里讨论的count语句,只需要统计条数,order by对条数没有影响,再比如查出记录列表后,不依赖记录的顺序遍历列表处理数据,这时候order by多此一举。

2、解决方案

查询sql无limit语句,且业务处理逻辑不依赖于order by后列表记录的顺序,则去除查询sql中的order by语句。

四、粗粒度查询

1、问题描述

业务中有很多定时任务,扫描某个表中某个产品下所有数据,对数据进行处理,比如:

SELECT * FROM XXX_rules

WHERE rule_name = “apf_distributors”

AND status = “00”

AND product_code = “ADVANCE”

三个查询条件都是区分度不高的列,查出的数据有27W条,加索引意义也不大。

2、分析

实际业务量没那么大,顶多几千条数据,表里的数据是从上游同步过来的,最好的办法是让上游精简数据,但是由于业务太久远,找上游的人维护难度太大,因此只能想其他的办法。

这个定时任务目的是拉出XXX_rules表的某些产品下的数据,和另一张表数据对比,更新有差异的数据。每天凌晨处理,对时效性没有很高的要求,因此,能不能转移任务处理的地方,不在本应用机器上实时处理那么多条数据?

3、解决方案

数据是离线任务odps同步过来的,首先想到的就是dataWork数据处理平台。

建立数据对比任务,将定时任务做的数据对比逻辑放到dataWork上用sql实现,每天差异数据最多几百条,且结果集含有区分度很高的列,将差异数据写入odps表,再将数据回流到idb。

新建定时任务,通过回流回来的差异数据中区分度高的列作为查询条件查询XXX_rules,更新XXX_rules,解决了慢sql问题。

这个方法的前提是对数据实效性要求不高,且离线产出的结果集很小。

五、OR导致索引失效

1、案例

SELECT count(*)

FROM XXX_level_report

WHERE 1 = 1

AND EXISTS (

SELECT 1

FROM XXX_white_list t

WHERE (t.biz_id = customer_id

OR customer_id LIKE CONCAT(t.biz_id, “@%”))

AND t.status = 1

AND (t.start_time <= CURRENT_TIME

OR t.start_time IS NULL)

AND (t.end_time >= CURRENT_TIME

OR t.end_time IS NULL)

AND t.biz_type = “GOODS_CONTROL_BLACKLIST”

2、分析

explain上述查询语句,得到结果如下:

阿里慢SQL治理5大经典案例[亲测有效]

XXX_white_list表有将biz_id作为索引,这里查询XXX_white_list表有传入biz_id作为查询条件,为啥explain结果里type为ALL,即扫描全表?索引失效了?索引失效有哪些情况?

索引失效场景:

①OR查询左右有未命中索引的;

②复合索引不满足最左匹配原则;

③Like以%开头;

④需要类型转换;

⑤where中索引列有运算;

⑥where中索引列使用了函数;

⑦如果mysql觉得全表扫描更快时(数据少时)

上述查询语句第8行,customer_id为XXX_level_report表字段,未命中XXX_white_list表索引,导致索引失效。

3、解决方案

这个语句用condition、枚举、join花里胡哨的代码拼接起来的,改起来好麻烦,而且看起来“OR customer_id LIKE CONCAT(t.biz_id, “@%”)”这句不能直接删掉。最后重构了该部分的查询语句,去除or查询,解决了慢sql。

作者丨如期

菜鸟供应链金融慢sql治理已经有一段时间,自己负责的应用持续很长时间没有慢sql告警,现阶段在推进组内其他成员治理应用慢sql。这里把治理过程中的一些实践拿出来分享下。

一、全表扫描

1、案例

SELECT count(*) AS tmp_count FROM (

SELECT * FROM `XXX_rules` WHERE 1 = 1 ORDER BY gmt_create DESC ) a

2、溯源

在分页查询治理的文章里已经介绍过我们系统旧的分页查询逻辑,上面的查询sql明显就是分页查询获取总记录数,通过XXX_rules表的分页查询接口溯源,找到发起调用的页面是我们小二后台的一个操作商家准入的页面,页面打开后直接调用分页查询接口,除了分页参数,不传入其他任何查询参数,导致扫描全表。

3、分析

灵魂拷问:为什么要扫描全表?全表数据展示到页面,花里胡哨的数据有用吗?

调研:和经常使用这个页面的运营聊后了解到,打开页面查询出的全表数据对运营是没有用的,他们根本不看这些数据。运营的操作习惯是拿到商家id,在页面查询框中输入商家id,查到商家数据后进行操作。

4、解决方案

由此优化方案就很明朗了:打开页面时不直接查询全量数据,等运营输入商家id后,将商家id作为参数进行查询。XXX_rules表中,商家id这一常用查询条件设置为索引,再结合分页查询优化,全表扫描慢sql得以解决。

优化后的小二后台页面如下:

阿里慢SQL治理5大经典案例[亲测有效]

打开页面时未查询任何数据,查询条件商家账户为必填项。

优化后的sql为:

SELECT count(*) AS tmp_count FROM (

SELECT * FROM `xxx_rules` WHERE 1 = 1 AND `rule_value` = “2928597xxx” ) a

执行EXPLAIN得到结果如下:

阿里慢SQL治理5大经典案例[亲测有效]

可以看到命中了索引,扫描行数为3,查询速度明显提高。

5、思考

扫描全表治理简单来说就是加入查询条件,命中索引,去除全表扫描查询,虽然有些粗暴,但并不是没有道理。实际业务场景中,很少有要扫描全表获取全部数据的情况,限制调用上游必须传入查询条件,且该查询条件能命中索引,能很大程度上避免慢sql。

另外,再引申下,XXX_rules初始的用意是准入表,记录金融货主维度的准入情况,最多也就几千条数据,但是很多同事将这张表理解为规则表,写入很多业务相关规则,导致这个表膨胀到一百多万条数据,表不clean了。这就涉及到数据表的设计使用,明确表的使用规范,不乱写入数据,能给后期维护带来很大的便利。

二、索引混乱

1、示例

阿里慢SQL治理5大经典案例[亲测有效]

2、分析

除了时间、操作人字段,XXX_rules表就rule_name、rule_value、status、product_code四个字段,表的索引对这四个字段做各种排列组合。存在如下问题:

1)rule_name离散度不高,放在索引首位不合适;

2)前三个索引重合度很高;

显然是对索引的命中规则不够了解。XXX_rules表很多业务有定时任务对其写入删除,索引多、混乱,对性能有很大的影响。

高性能的索引有哪些,再来回顾下:

①独立的列:索引列不能是表达式的一部分;

②选择区分度高的列作为索引;

③选择合适的索引列顺序:将选择性高的索引列放在最前列;

④覆盖索引:查询的列均在索引中,不需要回查聚簇索引;

⑤使用索引扫描来做排序;

⑥在遵守最左前缀的原则下,尽量扩展索引,而不是创建索引。

但凡记得第规则,也不至于把索引建成这样。

3、治理

对索引进行整合如下:

阿里慢SQL治理5大经典案例[亲测有效]

系统中有很多任务拉取整个产品下的准入记录,然后进行处理,所以将区分度较高的product_code放在索引首位,然后添加rule_name、status字段到索引里,进一步过滤数据,减少扫描行数,避免慢sql。针对常用的rule_value查询条件,可以命中UK,因此不用单独建立索引。

三、非必要排序

1、问题描述

很多业务逻辑中,需要拉取满足某个条件的记录列表,查询的sql语句带有order by,记录比较多的情况,排序代价往往很大,但是查询出来的记录是否有序对业务逻辑没有影响,比如分页治理里讨论的count语句,只需要统计条数,order by对条数没有影响,再比如查出记录列表后,不依赖记录的顺序遍历列表处理数据,这时候order by多此一举。

2、解决方案

查询sql无limit语句,且业务处理逻辑不依赖于order by后列表记录的顺序,则去除查询sql中的order by语句。

四、粗粒度查询

1、问题描述

业务中有很多定时任务,扫描某个表中某个产品下所有数据,对数据进行处理,比如:

SELECT * FROM XXX_rules

WHERE rule_name = “apf_distributors”

AND status = “00”

AND product_code = “ADVANCE”

三个查询条件都是区分度不高的列,查出的数据有27W条,加索引意义也不大。

2、分析

实际业务量没那么大,顶多几千条数据,表里的数据是从上游同步过来的,最好的办法是让上游精简数据,但是由于业务太久远,找上游的人维护难度太大,因此只能想其他的办法。

这个定时任务目的是拉出XXX_rules表的某些产品下的数据,和另一张表数据对比,更新有差异的数据。每天凌晨处理,对时效性没有很高的要求,因此,能不能转移任务处理的地方,不在本应用机器上实时处理那么多条数据?

3、解决方案

数据是离线任务odps同步过来的,首先想到的就是dataWork数据处理平台。

建立数据对比任务,将定时任务做的数据对比逻辑放到dataWork上用sql实现,每天差异数据最多几百条,且结果集含有区分度很高的列,将差异数据写入odps表,再将数据回流到idb。

新建定时任务,通过回流回来的差异数据中区分度高的列作为查询条件查询XXX_rules,更新XXX_rules,解决了慢sql问题。

这个方法的前提是对数据实效性要求不高,且离线产出的结果集很小。

五、OR导致索引失效

1、案例

SELECT count(*)

FROM XXX_level_report

WHERE 1 = 1

AND EXISTS (

SELECT 1

FROM XXX_white_list t

WHERE (t.biz_id = customer_id

OR customer_id LIKE CONCAT(t.biz_id, “@%”))

AND t.status = 1

AND (t.start_time <= CURRENT_TIME

OR t.start_time IS NULL)

AND (t.end_time >= CURRENT_TIME

OR t.end_time IS NULL)

AND t.biz_type = “GOODS_CONTROL_BLACKLIST”

2、分析

explain上述查询语句,得到结果如下:

阿里慢SQL治理5大经典案例[亲测有效]

XXX_white_list表有将biz_id作为索引,这里查询XXX_white_list表有传入biz_id作为查询条件,为啥explain结果里type为ALL,即扫描全表?索引失效了?索引失效有哪些情况?

索引失效场景:

①OR查询左右有未命中索引的;

②复合索引不满足最左匹配原则;

③Like以%开头;

④需要类型转换;

⑤where中索引列有运算;

⑥where中索引列使用了函数;

⑦如果mysql觉得全表扫描更快时(数据少时)

上述查询语句第8行,customer_id为XXX_level_report表字段,未命中XXX_white_list表索引,导致索引失效。

3、解决方案

这个语句用condition、枚举、join花里胡哨的代码拼接起来的,改起来好麻烦,而且看起来“OR customer_id LIKE CONCAT(t.biz_id, “@%”)”这句不能直接删掉。最后重构了该部分的查询语句,去除or查询,解决了慢sql。

作者丨如期

原文地址:https://www.cnblogs.com/88223100/archive/2022/03/16/5_Classic_Cases_of_Alibaba_Slow_SQL_Governance.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/5429.html

(0)
上一篇 2023-05-09
下一篇 2023-05-09

相关推荐

  • Python关键字大全

    Python关键字大全Python是一门高级编程语言,由Guido van Rossum于1989年底发明。它具有简洁明了的语法、易读易写的特点,并且具有许多强大的第三方库。Python支持面向对象、函数式、过程式等多种编程风格,被广泛应用于Web开发、数据分析、机器学习、人工智能、科学计算、游戏开发等领域。

    2024-05-06
    69
  • 三道MySQL联合索引面试题,淘汰80%的面试者,你能答对几道「终于解决」

    三道MySQL联合索引面试题,淘汰80%的面试者,你能答对几道「终于解决」众所周知MySQL联合索引遵循最左前缀匹配原则,在少数情况下也会不遵循(有兴趣,可以翻一下上篇文章)。
    创建联合索引的时候,建议优先把区分度高的字段放在第一列。
    至于怎么统计区分度,可以按照下面这种方

    2023-06-01
    147
  • MySql事务的简单使用 – 纪宇

    MySql事务的简单使用 – 纪宇4个特性 原子性:一个事务中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。事务在执行过程中发生错误,会被回滚(rollback)到事务开始前的状态 一致性:在事务开始前和事务结束以

    2022-12-23
    138
  • Python按钮组件实现

    Python按钮组件实现按钮组件是GUI界面中最基础的组件之一,一般用于触发某些事件或者操作。Python作为一种高级编程语言,在界面开发上自然也不会落后。在Python中,有很多的GUI库可以供我们使用,如Tkinter、PyQt、wxPython等。下面我们主要介绍如何使用Tkinter来实现Python按钮组件。

    2024-01-13
    105
  • 如何查看Python版本号

    如何查看Python版本号在使用Python进行编程的时候,我们需要经常查看Python版本号,确定系统内安装的Python版本是否符合我们的需求。然而,有时候我们并不知道如何查看Python的版本号。接下来,我们将从多个方面阐述如何查看Python版本号。

    2024-09-06
    23
  • Runtime Error「终于解决」

    Runtime Error「终于解决」

    2023-04-24
    175
  • 用 Python 计算平方根

    用 Python 计算平方根在日常生活和工作中,我们经常需要计算平方根,例如求解数学问题、计算科学数据等。 Python 是一种流行的编程语言,也具备计算平方根的功能。在本文中,我们会介绍如何用 Python 计算平方根,包括如何计算负数的平方根、如何选择计算平方根的函数等。

    2024-06-03
    66
  • mongodb数据库教程_mongodb是什么数据库

    mongodb数据库教程_mongodb是什么数据库1.MongoDB开发环境搭建 1.1.MongoDB介绍 MongoDB是一个基于分布式文件存储的数据库。由C++语言编写,旨在为WEB应用提供可扩展的高性能数据存储解决方案。 MongoDB是一个

    2023-04-15
    161

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注