hadoop副本3改成2_怀旧服副本掉落机制

hadoop副本3改成2_怀旧服副本掉落机制Hadoop2.x与Hadoop3.x副本选择机制

Hadoop2.x与Hadoop3.x副本选择机制

HDFS 上的文件对应的 Block 保存多个副本,且提供容错机制,副本丢失或者宕机自动恢复,默认是存 3 个副本。

2.8.x之前的副本策略

官方文档说明:

https://hadoop.apache.org/docs/r2.8.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Data_Replication

image-20220326111847444

For the common case, when the replication factor is three, HDFS’s placement policy is to put one replica on one node in the local rack, another on a different node in the local rack, and the last on a different node in a different rack. This policy cuts the inter-rack write traffic which generally improves write performance. The chance of rack failure is far less than that of node failure; this policy does not impact data reliability and availability guarantees. However, it does reduce the aggregate network bandwidth used when reading data since a block is placed in only two unique racks rather than three. With this policy, the replicas of a file do not evenly distribute across the racks. One third of replicas are on one node, two thirds of replicas are on one rack, and the other third are evenly distributed across the remaining racks. This policy improves write performance without compromising data reliability or read performance.

第一副本:放置在上传文件的 DataNode 上;如果是集群外提交,则随机挑选一个磁盘不太慢、CPU 不太忙的节点。

第二副本:放置在与第一个副本相同的机架的节点上

第三副本:与第二个副本相同机架的不同节点上

如果还有更多的副本:随机放在节点上,同时需要保持每个机架的副本数低于上限,基本上是((replicas - 1) / racks + 2)。

因为 NameNode 不允许 DataNodes 拥有同一个 block 的多个副本,所以能创建的最大副本数就是当时 DataNodes 的总数。

image-20220326111946934

2.9.x之后及3.x的副本策略

官方文档说明:

https://hadoop.apache.org/docs/r2.9.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Data_Replication

image-20220326111236998

For the common case, when the replication factor is three, HDFS’s placement policy is to put one replica on the local machine if the writer is on a datanode, otherwise on a random datanode, another replica on a node in a different (remote) rack, and the last on a different node in the same remote rack. This policy cuts the inter-rack write traffic which generally improves write performance. The chance of rack failure is far less than that of node failure; this policy does not impact data reliability and availability guarantees. However, it does reduce the aggregate network bandwidth used when reading data since a block is placed in only two unique racks rather than three. With this policy, the replicas of a file do not evenly distribute across the racks. One third of replicas are on one node, two thirds of replicas are on one rack, and the other third are evenly distributed across the remaining racks. This policy improves write performance without compromising data reliability or read performance.

第一副本:放置在上传文件的 DataNode 上;如果是集群外提交,则随机挑选一个磁盘不太慢、CPU 不太忙的节点。

第二副本:放置在与第一个副本不同的机架的节点上

第三副本:与第二个副本相同机架的不同节点上

如果还有更多的副本:随机放在节点上,同时需要保持每个机架的副本数低于上限,基本上是((replicas - 1) / racks + 2)。

因为 NameNode 不允许 DataNodes 拥有同一个 block 的多个副本,所以能创建的最大副本数就是当时 DataNodes 的总数。

image-20220326110939205

原文地址:https://www.cnblogs.com/dawn-lewis/archive/2022/03/26/16058179.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/5412.html

(0)
上一篇 2023-05-10
下一篇 2023-05-10

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注