数据插补—拉格朗日插值法 – hjk「建议收藏」

数据插补—拉格朗日插值法 – hjk「建议收藏」##数据分析 ###数据清洗:缺失值处理、1删除记录 2数据插补 3不处理 ###数据在https://book.tipdm.org/jc/219 中的资源包中数据和代码chapter4demod

数据插补—拉格朗日插值法 - hjk

数据分析

数据清洗:缺失值处理、1删除记录 2数据插补 3不处理

数据在https://book.tipdm.org/jc/219 中的资源包中数据和代码chapter4demodatacatering_sale.xls

image
image

常见插补方法

image

插值法-拉格朗日插值法

根据数学知识可知,对于平面上已知的n个点(无两点在一条直线上可以找到n-1次多项式
image
,使次多项式曲线过这n个点。
1)求已知过n个点的n-1次多项式:
image

将n个点的坐标带入多项式:得到image
解出拉格朗日插值多项式:image
将缺失的函数值对应的点x带入多项式得到趋势值得近似值L(x)

#拉格朗日插值代码
import pandas as pd #导入数据分析库Pandas
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import lagrange #导入拉格朗日插值函数

inputfile = "../data/catering_sale.xls" #销量数据路径
outputfile = "../tmp/sales.xls" #输出数据路径

data = pd.read_excel(inputfile) #读入数据
temp = data[u"销量"][(data[u"销量"] < 400) | (data[u"销量"] > 5000)] #找到不符合要求得值 data[列][行]
for i in range(temp.shape[0]):
    data.loc[temp.index[i],u"销量"] = np.nan #把不符合要求得值变为空值

#自定义列向量插值函数
#s为列向量,n为被插值的位置,k为取前后的数据个数,默认为5
def ployinterp_column(s, n, k=5):
  y = s.iloc[list(range(n-k, n)) + list(range(n+1, n+1+k))] #取数 就是传入得data
  y = y[y.notnull()] #剔除空值
  f = lagrange(y.index, list(y))
  return f(n) #插值并返回插值结果

#逐个元素判断是否需要插值
for i in data.columns:
  for j in range(len(data)):
    if (data[i].isnull())[j]: #如果为空即插值。
        data.loc[j,i] = ployinterp_column(data[i], j)

data.to_excel(outputfile) #输出结果,写入文件
print("success")

运行结果:

image
这个代码是可以运行的


问题

没有SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame
image
我也不知道时怎么把这个警告消除的,反正就是找啊找,在我不注意的时候能运行了!好像是不能一下多个赋值,要分开赋值。

最后

但是我们细看可以发现插入的值有问题:把插入的值输出可以看到有一个异常值
image

我们在处理数据时把小于400,大于5000的值都变成空值,然后通过拉格朗日插值法插入值,想要把数据没有那么大的差值,但是给我们插入一个负数,并且很离谱。我检查了一下并没有发现哪里有错误;然后我把用到的数据和拟合出来的拉格朗日函数输出得到:
f=-0.008874 x + 11.53 x – 6657 x + 2.242e+06 x – 4.854e+08 x + 7.005e+10 x – 6.74e+12 x + 4.168e+14 x – 1.504e+16 x + 2.411e+17
image
并没有发现问题,让后我就想着是不是拟合出来的函数步够精确,我把取点增加,但是都没有好的结果,反而更离谱,这种情况就是过拟合了,就是这个模型可以把你训练的模型拟合的很好,但是测试模型并不好。
举个例子:下面一组数据可以看到用x4函数拟合的并没有太多的点在模型上,x4函数拟合的相对较多一点,但是如果进行测试,14次方的模型可能会预测的很离谱:
image

最后我把取值点减小发现上下取点4个时都会有一个好的结果,上下去点为3,2,1(直线,不建议取)时也都还能接受。所以我么拟合出来的五个上下点时也并没有错,只是它拟合出来的函数就是在那个点上数值离谱。

原文地址:https://www.cnblogs.com/hjk-airl/archive/2022/03/30/15766870.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/5405.html

(0)
上一篇 2023-05-10
下一篇 2023-05-10

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注