clickhouse为什么这么快_clickhouse高可用

clickhouse为什么这么快_clickhouse高可用更多技术交流、求职机会、试用福利,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 近年来,OLAP产品的竞争日渐激烈,目前企业间流行的既有Impala、Greenplum等上一代较为成熟

数据分析引擎百花齐放,为什么要大力投入ClickHouse?

更多技术交流、求职机会、试用福利,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群

近年来,OLAP产品的竞争日渐激烈,目前企业间流行的既有Impala、Greenplum等上一代较为成熟的数据分析产品,也有ClickHouse、Kylin、Druid、Doris、StarRocks等在不同场景各具特色的新一代分析引擎。这些产品各有胜场,用户在进行选择时需要对各产品有全面的了解,并且要求产品知识紧跟最新版本,才能准确的选出适合自己公司的产品。

字节跳动旗下抖音、今日头条等产品的成长速度很快,需要分析处理的数据也随之指数级的快速增长,这对分析的实时性有极高的要求。在选择OLAP引擎时,字节也尝试过Kylin、Druid、Spark等,并且其他产品也做了广泛的调研。经过不断尝试和思考,字节从性能、稳定、可复用等角度考量,最终选择了ClickHouse作为主分析引擎,承载字节跳动广泛的业务增长分析工作。当前,字节跳动内部的ClickHouse节点总数已经超过 18000 个,管理总数据量超过 700PB,最大的集群规模在 2400 余个节点,是全国乃至于全世界最大的ClickHouse用户之一。

字节跳动的OLAP演进

起初时,最大需求的是“快”,所以字节团队尝试了Kylin,它的优点是能够提供毫秒级别的查询延时。但同时Kylin也存在需要预聚合、需要提前定义数据模型和无法进行交互式分析等问题,随着数据量变大反而会导致返回结果慢。随后团队又希望用Spark来解决问题。但Spark同样存在不少问题困扰着团队,比如查询速度不够快、资源使用率高、稳定性不够好,以及无法支持更长时间的数据等。

经过认真思考,字节决定从以下角度来选择OLAP分析引擎:

一是对 OLAP 非常朴素又简单的要求:高可用和强性能。不论给 OLAP 加上多少复用、赋予多少身份,最核心且首要的诉求是能存储足够多的数据、足够稳定,并且可以非常快地查到数据。这是第一个要求——要好用,即满足海量数据下交互式分析的性能要求,达到秒级响应。

二是复用。在好用的基础上,团队希望能尽量用一套技术栈解决大部分问题甚至是所有问题,这就需要引擎是可定制的,能让开发人员在这套技术栈上搭建各种面向场景化的应用。

三是易用,能让用户更加自主地把产品使用起来。

最终,经过对当时市面上已有的多款开源引擎的调研和测试,团队最终选择采用 ClickHouse 作为 OLAP 查询引擎,并开始基于此不断迭代。

ClickHouse简介

ClickHouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS)。于2016年开源,以性能强悍著称。其具备列式存储、向量化执行引擎、高压缩比、多核并行计算等特性。

1.  性能强

号称最快的OLAP引擎,在1亿数据量级相同服务器的性能对比如下:

 

图片

 

2. 功能丰富

ClickHouse支持数据统计分析各种场景:

  • 支持类SQL查询;

  • 支持繁多库函数(例如IP转化,URL分析等,预估计算/HyperLoglog等);

  • 支持数组(Array)和嵌套数据结构(Nested Data Structure);

  • 支持数据库异地复制部署。

3. 数据导入速度快

ClickHouse使用大规模并行计算框架,超高吞吐的实时写入能力,每秒在50-200M量级。

ClickHouse采用类LSM Tree的结构,数据写入后定期在后台Compaction。通过类 LSM tree的结构, ClickHouse在数据导入时全部是顺序append写,写入后数据段不可更改,在后台compaction时也是多个段merge sort后顺序写回磁盘。顺序写的特性,充分利用了磁盘的吞吐能力。

4. 发展前景好

自2016年开源以来,ClickHouse凭借其数倍于其他顶尖交互式分析数据库的极致性能,发展速度非常迅猛。目前,ClickHouse已在Github上获得24.2K Star,1000+的Contributors。

ClickHouse的缺点

没有任何一个数据引擎是完美无缺的,在大量使用过程中,字节也发现了ClickHouse的一些缺点:

1. 关联查询能力差

ClickHouse的优势在单表查询性能,但是在一些要求灵活查询的场景,ClickHouse多表关联能力的不足就暴露了出来,难以满足这类场景。

2. 依赖Zookeeper

Zookeeper在ClickHouse中主要用于副本表数据的同步(ReplicatedMergeTree引擎)以及分布式表(Distributed)的操作上。但是对Zookeeper的不当使用很容易引起ClickHouse集群的不稳定。

3. 不支持upsert

ClickHouse仅支持批量删除或修改数据,ReplacingMergeTree需要依赖merge异步去重。

4. 运维复杂

ClickHouse扩缩容时需要创建新表重新导数据,十分不方便。ClickHouse集群不能自动感知集群拓扑变化,也不能自动balance数据。当集群数据量较大,复制表和分布式表过多时、想做到表维度、或者集群之间的数据平衡会导致运维成本很高。

 

立即跳转火山引擎ByteHouse官网了解详情!欢迎下载《从ClickHouse到ByteHouse》白皮书了解更多~

原文地址:https://www.cnblogs.com/bytedata/archive/2022/07/13/16473474.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/5032.html

(0)
上一篇 2023-05-25 19:30
下一篇 2023-05-25

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注