大家好,我是考100分的小小码 ,祝大家学习进步,加薪顺利呀。今天说一说大数据dds_应用用户数据怎么那么大,希望您对编程的造诣更进一步.
我们前面采集的日志数据已经保存到 Kafka 中,作为日志数据的 ODS 层,从 Kafka 的ODS 层读取的日志数据分为 3 类, 页面日志、启动日志和曝光日志。这三类数据虽然都是用户行为数据,但是有着完全不一样的数据结构,所以要拆分处理。将拆分后的不同的日志写回 Kafka 不同主题中,作为日志 DWD 层。
流页面日志输出到主流,启动日志输出到启动侧输出流,曝光日志输出到曝光侧输出流
识别新老用户
本身客户端业务有新老用户的标识,但是不够准确,需要用实时计算再次确认(不涉及业务操作,只是单纯的做个状态确认)。
启动日志
曝光日志
页面日志
实现逻辑
- 获取执行环境
- 消费 ods_base_log 主题数据创建流
- 将每行数据转换为JSON对象(脏数据写到侧输出流)
- 新老用户校验 状态编程
- 分流 侧输出流 页面:主流 启动:侧输出流 曝光:侧输出流
- 提取侧输出流
- 将三个流进行打印并输出到对应的Kafka主题中
- 启动任务
# 启动三个消费者,分别消费 dwd_start_log、dwd_page_log、dwd_display_log 主题
$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic dwd_page_log
尚硅谷 源代码
B站视频 DWD&DIM
原文地址:https://www.cnblogs.com/vipsoft/archive/2022/12/09/16965975.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/4435.html