利用Python defaultdict提高字典操作效率

利用Python defaultdict提高字典操作效率
Python字典是一种类似于映射的数据结构,由一系列键值对组成。字典中的键必须是唯一的、不可变的类型,例如字符串、整数或元组,而值可以是任意类型的Python对象。对于许多应用程序来说,Python字典是一种最方便的数据结构,它允许快速访问、插入和删除元素,并支持非常快速的查找操作。

一、什么是Python字典?

Python字典是一种类似于映射的数据结构,由一系列键值对组成。字典中的键必须是唯一的、不可变的类型,例如字符串、整数或元组,而值可以是任意类型的Python对象。对于许多应用程序来说,Python字典是一种最方便的数据结构,它允许快速访问、插入和删除元素,并支持非常快速的查找操作。

但是,当我们需要按照键来维护一个列表或者集合时,普通的字典操作会显得比较繁琐。例如,假设我们需要为大量文档中的每个单词创建一个列表,以存储相关的所有文档。使用普通的Python字典实现这个任务,需要在每次更新文档列表时都检查该键是否已经存在。这将导致代码变得复杂,而且在处理大数据量时会导致性能问题。这时,Python的defaultdict就可以派上用场了。

二、defaultdict的介绍

  Python的defaultdict模块提供了一种替代标准字典类的方式,它使我们能够轻松地创建递归结构,并将默认值与每个新建键相关联。

  from collections import defaultdict
  
  word_docs = defaultdict(list)
  for doc in documents:
      for word in doc.split():
          word_docs[word].append(doc)

这里,word_docs是一个字典,它的值是文档列表。然而,与通常的Python字典不同的是,在首次访问新的键时,它会自动创建一个空列表。这使我们能够避免在更新列表之前检查每个键是否存在的问题,从而使代码更加简洁、易于阅读。

三、defaultdict的示例运用

1. defaultdict处理较为复杂的数据结构

例如,我们想要存储一个单词的所有后缀以及这些后缀出现在哪些单词中。用普通的字典,我们需要显式创建新的列表。但用defaultdict,我们可以通过访问新的键来自动创建新的列表。下面是一个例子:

  from collections import defaultdict
  
  suffix_trie = defaultdict(lambda: defaultdict(list))

  for word in word_list:
      for i in range(len(word)):
          suffix = word[i:]
          suffix_trie[suffix][word].append(i)

上面这个字典含有一个元素,其键是一个后缀,其值是一个嵌套的字典,其键是出现过该后缀的单词,其值是单词中的后缀出现位置的列表。因此,执行以下代码:

  print(suffix_trie["age"]["page"])

假设”page”是在列表中的一个单词。下面是输出结果:

  [1]

这表示“age”这个后缀出现在“page”的索引1的位置。

2. 字典的嵌套和其他数据类型的嵌套

有时候我们希望在字典中嵌套其他数据类型,如列表、元组或集合。默认字典与此类嵌套相当擅长,因为它能够自动为新键创建新的嵌套数据结构。

  from collections import defaultdict
  
  # 创建一个字典的嵌套列表,存储单词的后缀以及这些后缀出现在哪些单词中
  suffix_dict = defaultdict(list)

  for word in word_list:
      for i in range(1, len(word) + 1):
          suffix_dict[word[-i:]].append(word)

这会创建一个字典,其键是所有单词的后缀,值是包含所有原始单词的列表,其后缀等于该键。例如,该字典将包含以下条目:“car”:[“scar”, “car”]。

3. defaultdict处理其他数据结构

另一个常见的用途是用defaultdict处理堆栈或队列。例如,我们可以创建一个嵌套列表的defaultdict来模拟一个简单的FIFO队列:

  from collections import defaultdict
  
  queue_dict = defaultdict(list)

  def enqueue(queue_dict, element, priority=0):
      queue_dict[priority].append(element)

  def dequeue(queue_dict):
      priority = min(queue_dict.keys())
      element = queue_dict[priority].pop(0)
      if not queue_dict[priority]:
          del queue_dict[priority]
      return element

  enqueue(queue_dict, 'A', priority=1)
  enqueue(queue_dict, 'B', priority=2)
  enqueue(queue_dict, 'C', priority=1)

  print(dequeue(queue_dict))  # A
  print(dequeue(queue_dict))  # C
  print(dequeue(queue_dict))  # B

四、总结

在许多情况下,Python的defaultdict可以提高代码的可读性和效率。值得注意的是,它并不是完美的,因为它可能会因为尝试创建大量缺失键而导致内存和I/O的开销。但是,在许多场景中,该模块可以使代码更加清晰、易于处理,而且性能不俗。同时,需要注意在体量较大的字典数据结构场合使用它时,也不能够完全摆脱时间和空间的考虑。

对于那些需要处理大量缺失键的应用程序,例如文本处理系统,defaultdict提供了一种解决方案来优化代码的内部操作,提高代码的可读性和性能。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/22618.html

(0)
上一篇 2024-01-09
下一篇 2024-01-09

相关推荐

  • 密码盐的作用及其重要性

    密码盐的作用及其重要性随着互联网技术的不断发展,越来越多的信息存储在互联网上。这些信息包含用户的个人信息、登录密码等敏感信息。其中,密码是最常用的身份验证方式,相应地,密码泄露的事件也不时发生。在这种情况下,如何保证密码的安全性成为了互联网安全的关键问题之一。

    2024-05-27
    56
  • 使用 SQL 服务器时,”评估期已过期”错误消息[通俗易懂]

    使用 SQL 服务器时,”评估期已过期”错误消息[通俗易懂]当打开sql server2008企业管理器的时候,出现报错“评估期已过。有关如何升级的测试版软件的信息…..” 修改注册表:HKEY_LOCAL_MACHINE/SOFTWARE/Microso

    2022-12-26
    167
  • mysql对子查询的优化改写

    mysql对子查询的优化改写《高性能mysql第三版》提到mysql会将in子查询改写成exists查询(书中基于的mysql版本是5.1.50和5.5) 但是在5.6之后,已经优化成使用半连接查询 首先要提的当然是臭名昭著的…

    2022-12-25
    151
  • mysql整体迁移_anaconda环境迁移

    mysql整体迁移_anaconda环境迁移一次生产环境mysql迁移操作(一)数据归档 一次生产环境mysql迁移操作(二)mysql空间释放(碎片整理) 背景 在项目过程中我们经常要对数据库进行迁移、归档、拆分等等操作,现在描述下几种方案…

    2023-01-25
    164
  • 学习Python threading模块

    学习Python threading模块Python的threading模块允许程序在单独的线程中执行代码。程序的一个或多个进程可以同时运行,从而使多个任务可以并行执行。Python是一种非常流行的编程语言,它不仅具有简单易学的语法,而且具有非常强大的线程和进程支持。threading模块使得我们能够更加灵活和高效地控制Python程序。

    2024-08-05
    37
  • Python工程师:掌握Exp计算的基本技能

    Python工程师:掌握Exp计算的基本技能计算机科学中,Exponential(指数)函数非常普遍。在Python中,我们可以使用math模块中的exp()函数来计算。然而,对于大规模数据的处理或复杂的计算,我们需要更高效的方法来计算Exp函数。

    2024-06-11
    51
  • 「Flink」使用Managed Keyed State实现计数窗口功能

    「Flink」使用Managed Keyed State实现计数窗口功能先上代码:public class WordCountKeyedState { public static void main(String[] args) throws Exception { St

    2023-01-25
    147
  • 用Python下载Jupyter Notebook文件

    用Python下载Jupyter Notebook文件随着人工智能和数据科学的快速发展,Jupyter Notebook成为了一个极其受欢迎的交互式编程和数据分析环境。Jupyter Notebook可以将代码,文本,图形和可视化工具集成在一起,并且是一个非常适合数据科学和机器学习的平台。在数据科学实践中,我们通常会将代码和文本组合在一个Jupyter Notebook文档中,以便共享给其他人进行更好的协作和交流。在这种情况下,我们需要使用Python来下载Jupyter Notebook文件。

    2024-09-17
    23

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注