用matlab压缩图像_matlab如何改变图片的像素

用matlab压缩图像_matlab如何改变图片的像素目的 原理 图像压缩原理 离散余弦变换(DCT)图像压缩原理 行程编码(RLE)原理 步骤 MATLAB 中的变长码映射 离散余弦变换(DCT)图像压缩 利用离散余弦变换进行JPEG 图像压缩

文章和代码以及样例图片等相关资源,已经归档至【Github仓库:digital-image-processing-matlab】或者公众号【AIShareLab】回复 数字图像处理 也可获取。

目的

1. 理解图像压缩的相关概念及图像压缩的主要原则和目的;

2. 掌握霍夫曼编码

3. 掌握几种常见的图像压缩编码方法

4. 利用 MATLAB 程序进行图像压缩

原理

图像压缩原理

图像压缩主要目的是为了节省存储空间,增加传输速度。图像压缩的理想标准是信息丢失最少,压缩比例最大。不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。

信息的冗余量有许多种,如空间冗余,时间冗余,结构冗余,知识冗余,视觉冗余等,数据压缩实质上是减少这些冗余量。高效编码的主要方法是尽可能去除图像中的冗余成分,从而以最小的码元包含最大的图像信息。

编码压缩方法有许多种,从不同的角度出发有不同的分类方法,从信息论角度出发可分为两大类。

(1)冗余度压缩方法,也称无损压缩、信息保持编码或嫡编码。具体说就是解码图像和压缩编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。

(2)信息量压缩方法,也称有损压缩、失真度编码或烟压缩编码。也就是说解码图像和原始图像是有差别的,允许有一定的失真。

应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下 3 类:

(1)无损压缩编码种类 哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev 编码。

(2)有损压缩编码种类

  • 预测编码,DPCM,运动补偿

  • 频率域方法:正交变换编码(如DCT),子带编码;

  • 空间域方法:统计分块编码;

  • 模型方法:分形编码,模型基编码;

  • 基于重要性:滤波,子采样,比特分配,向量量化;

(3)混合编码。 有 JBIG,H261,JPEG,MPEG 等技术标准。

离散余弦变换(DCT)图像压缩原理

离散余弦变换 DCT 在图像压缩中具有广泛的应用,它是JPEG、MPEG 等数据压缩标准的 重要数学基础。

和相同图像质量的其他常用文件格式(如GIF(可交换的图像文件格式),TIFF(标签图像文件格式),PCX(图形文件格式))相比,JPEG 是目前静态图像中压缩比最高的。JPEG 比其他几种压缩比要高得多,而图像质量都差不多(JPEG 处理的图像只有真彩图和灰度图)。正是由于其高压缩比,使得JPEG 被广泛地应用于多媒体和网络程序中。JPEG 有几种模式,其中最常用的是基于DCT 变换的顺序型模式,又称为基本系统(Baseline)。

用DCT 压缩图像的过程为:

(1)首先将输入图像分解为8×8 或16×16 的块,然后对每个子块进行二维DCT变换。 (2)将变换后得到的量化的DCT 系数进行编码和传送,形成压缩后的图像格式。

用 DCT 解压的过程为:

(1)对每个8×8 或16×16 块进行二维DCT 反变换。 (2)将反变换的矩阵的块合成一个单一的图像。

余弦变换具有把高度相关数据能量集中的趋势,DCT 变换后矩阵的能量集中在矩阵的 左上角,右下的大多数的DCT 系数值非常接近于0。对于通常的图像来说,舍弃这些接近 于0 的DCT 的系数值,并不会对重构图像的画面质量带来显著的下降。所以,利用DCT 变换进行图像压缩可以节约大量的存储空间。压缩应该在最合理地近似原图像的情况下使用 最少的系数。使用系数的多少也决定了压缩比的大小。

在压缩过程的第 2 步中,可以合理地舍弃一些系数,从而得到压缩的目的。在压缩 过程的第2 步,还可以采用RLE 和Huffman 编码来进一步压缩。

行程编码(RLE)原理

例如如下这幅的二值图像,

用matlab压缩图像_matlab如何改变图片的像素

如果采用行程编码可以按如下格式保存

用matlab压缩图像_matlab如何改变图片的像素

其中10 和8 表示图像的宽和高。在这个小例子中行程编码并没有起到压缩图像的作用。这是由于这个图的尺寸过小,当图像尺寸较大时行程编码还是不错的无损压缩方法。对于灰度图像和二值图像,用行程编码—般都有很高的压缩率。行程编码方法实现起来很容易,对于具有长重复值的串的压缩编码很有效,例如:对于有大面积的阴影或颜色相同的图像,使用这种方法压缩效果很好。很多位图文件格式都采用行程编码,如TIFF,PCX,GEM,BMP等。

步骤

MATLAB 中的变长码映射

clear all
clc


f2=uint8([2 3 4 2;3 2 4 4;2 2 1 2;1 1 2 2])
whos('f2')
c=huffman(hist(double(f2(:)),4))
h1f2=c(f2(:))'
whos('h1f2')
%h2f2=char(h1f2)'
h2f2=[1 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1;...
' ' 1 ' ' 1 1 ' ' 1 0 0 1 ' ' 0 ' ';...
' ' 0 ' ' 1 0 ' ' 1 ' ' 1 ' ']
whos('h2f2')

h2f2=h2f2(:);
h2f2(h2f2==' ')=[];
whos('h2f2')

h3f2=mat2huff(f2)
whos('h3f2')

hcode=h3f2.code;
whos('hcode')
dec2bin(double(hcode))

%-----------------------------------------%
function CODE=huffman(p)

error(nargchk(1,1,nargin));
if(ndims(p)~=2)|(min(size(p))>1)|~isreal(p)|~isnumeric(p)
    error('p must be a real numeric vector');
end

global CODE
CODE=cell(length(p),1);%init the global cell array
if (length(p)>1) %when more than one symbol....
    p=p/sum(p);%Normalize the input probabilities
    s=reduce(p);%Do Huffman source symbol reductions
    makecode(s,[]);%Recursively(递归) generate the code
else
    CODE={'1'};%else, trivial(普通的) one symbol case
end;
%---------------------------------------------------------%

function s=reduce(p);
s=cell(length(p),1);
for i=1:length(p)
    s{i}=i;
end

while size(s)>2
    [p,i]=sort(p);%sort the symbol probabilities
    p(2)=p(1)+p(2);%Merge the 2 lowest probabilities
    p(1)=[];% and prune(,剪除、删除) the lowest one

    s=s(i);
    s{2}={s{1},s{2}};
    s(1)=[];
end
%------------------------------------------------------------%
function makecode(sc,codeword)

global CODE
if isa(sc,'cell')
    makecode(sc{1},[codeword 0]);
    makecode(sc{2},[codeword 1]);
else
    CODE{sc}=char('0'+codeword);
End
%-----------------------------------------------------------%
function y=mat2huff(x)

if ndims(x)~=2|~isreal(x)|(~isnumeric(x) & ~islogical(x))
    error('x must be a 2-D real numeric or logical matrix');
end

y.size=uint32(size(x));
x=round(double(x));
xmin=min(x(:));
xmax=max(x(:));
pmin=double(int16(xmin));
pmin=uint16(pmin+32768);%
y.min=pmin;
x=x(:)';
h=histc(x,xmin:xmax);
if max(h)>65535
    h=65535*h/max(h);
end
h=uint16(h);
y.hist=h;

%code the input matrix and store the result
map=huffman(double(h));
hx=map(x(:)-xmin+1)
hx = ['1' ' ' '1' '0' ' ' '1' '1' '0' ' ' ' '...
    '0' '1' '1' ' ' '1' '1']';
%hx=char(hx);
hx=hx(:)';
hx(hx==' ')=[];
ysize=ceil(length(hx)/16);
hx16=repmat('0',1,ysize*16);
hx16(1:length(hx))=hx;
hx16=reshape(hx16,16,ysize);
hx16=hx16' - '0';
twos=pow2(15:-1:0);
y.code=uint16(sum(hx16.*twos(ones(ysize,1),:),2))';
%-----------------------------------------------------------------------%

离散余弦变换(DCT)图像压缩

在图像的变换和压缩中,常常用到离散余弦变换(DCT)。DCT 具有能使图像的最重要的信息集中在DCT 的几个系数上的性能。正是基于此,DCT 通常应用于图像的压缩。

clear all
clc
I=imread('D:\pic\DIP3E_CH11_Original_Images\Fig1137(b)(painting_translated_padded).tif','tif');

I=im2double(I);
T=dctmtx(8);
B=blkproc(I,[8,8],'P1*x*P2',T,T');
mask=[1 1 1 1 0 0 0 0;1 1 1 0 0 0 0 0;1 1 0 0 0 0 0 0;...
        1 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;...
        0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0];
B2=blkproc(B,[8,8],'P1.*x',mask);
I2=blkproc(B2,[8,8],'P1*x*P2',T',T);
imshow(I),title('原图象');
figure,imshow(I2),title('变换后的图象');

利用离散余弦变换进行JPEG 图像压缩

clear all
clc
I=imread('D:\pic\DIP3E_CH11_Original_Images\Fig1137(b)(painting_translated_padded).tif'); %读入原图像;
I=im2double(I); %将原图像转为双精度数据类型;
T=dctmtx(8); %产生二维DCT 变换矩阵
B=blkproc(I,[8 8],'P1*x*P2',T,T'); %计算二维DCT,矩阵T 及其转置T’是DCT 函数
%P1*x*P2 的参数
mask=[ 1 1 1 1 0 0 0 0;1 1 1 0 0 0 0 0;1 1 0 0 0 0 0 0;1 0 0 0 0 0 0 0;...
    0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0];
%二值掩膜,用来压缩DCT 系数,只留下DCT 系数中左上角的10 个
B2=blkproc(B,[8 8],'P1.*x',mask); %只保留DCT 变换的10 个系数
I2= blkproc(B2,[8,8],'P1*x*P2',T',T); %逆DCT,重构图像
Subplot(1,2,1);
Imshow(I);title('原图像');%显示原图像
Subplot(1,2,2);
Imshow(I2);title('压缩图像');%显示压缩后的图像。对比原始图像和压缩后的图像,虽然
%舍弃了85%的DCT 系数,但图像仍然清晰(当然有一些质量损失)

参考文献:

[1] Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins. 2003. Digital Image Processing Using MATLAB. Prentice-Hall, Inc., USA.

[2] 阮秋琦. 数字图像处理(MATLAB版)[M]. 北京:电子工业出版社, 2014.

[3] 冈萨雷斯. 数字图像处理(第三版)[M]. 北京:电子工业出版社, 2011.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/13345.html

(0)

相关推荐

  • [Oracle] oralce 11.2.0.4手动创建EM「建议收藏」

    [Oracle] oralce 11.2.0.4手动创建EM「建议收藏」这里使用的版本是RedHat7.0,Oracle 11.2.0.4 1.dbconsole启动失败 [oracle@redhat75 ~]$ emctl start dbconsole Enviro…

    2022-12-27
    156
  • Python Tuple Usage Guide

    Python Tuple Usage GuidePython是一种极受欢迎的编程语言,其中元组(Tuple)是Python中的一种重要的数据类型。元组在许多场景下都非常有用,因为它可以帮助您存储和操作多个值。本篇文章将会向您介绍Python中元组的概念、创建、修改及元组相关的各种操作。

    2024-09-13
    23
  • Shell学习成果之一键自动安装Mysql8.0

    Shell学习成果之一键自动安装Mysql8.0实验环境 系统:CentOS7.7.1908 MySql:mysql-8.0.18-el7-x86_64.tar.gz 一键安装脚本如下(可直接复制粘贴为shell脚本,与MySQL安装包放到同一目…

    2022-12-20
    143
  • 随笔记录-_随笔笔记怎么写

    随笔记录-_随笔笔记怎么写我之前用sqlserver连过很多人的数据库,后来我怕登陆的时候登陆错了,想清楚一下连接那里的默认记录,后来在网上找过许多方法都不行,后来误打误撞找到了方法,大家可以试一下下边的方法: 有的直接放在U

    2023-02-05
    149
  • redis基本操作 —— string[亲测有效]

    redis基本操作 —— string[亲测有效]一、设置指定key的值 命令:set 格式:set key value 127.0.0.1:6379> set test_key test_value OK 二、获取指定key的值 命令:get

    2023-03-06
    138
  • Python Tkinter Scrollbar – 实现滚动窗口的图形用户界面组件

    Python Tkinter Scrollbar – 实现滚动窗口的图形用户界面组件在图形用户界面(GUI)开发中,滚动窗口是一种非常实用的组件,可以扩展用户界面的显示范围,同时可以非常方便地查看大量数据。Python Tkinter 模块提供了 Scrollbar 组件,可以轻松地实现带有滚动条的窗口界面。在本文中,我们将从多个方面对 Python Tkinter Scrollbar 进行详细的阐述。

    2023-12-23
    105
  • Python安装位置

    Python安装位置Python是目前最流行的编程语言之一,其代码易于理解、简洁、高效,因此受到了很多人的欢迎。Python的安装位置是学习、使用和开发Python的重要问题。因此,在本文中,我们将深入阐述Python的安装位置问题。

    2024-05-22
    50
  • 安装oracle11g数据库使用的最小物理内存_oracleclient安装教程11g

    安装oracle11g数据库使用的最小物理内存_oracleclient安装教程11g安装oracle11g数据库 一、oracle11g下载 点击链接进入选择相应的版本下载。oracle11g版本有两个文件,下载的时候需要登录,你可以注册一个或者百度一下oracle账号。 二、or…

    2023-03-09
    156

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注