MongoDB 谨防索引seek的效率问题

MongoDB 谨防索引seek的效率问题[TOC] 声明:本文同步发表于 MongoDB 中文社区,传送门: ‘http://www.mongoing.com/archives/27310’ 背景 最近线上的一个工单分析服务一直不大稳定,监

声明:本文同步发表于 MongoDB 中文社区,传送门:
http://www.mongoing.com/archives/27310

背景

最近线上的一个工单分析服务一直不大稳定,监控平台时不时发出数据库操作超时的告警。
运维兄弟沟通后,发现在每天凌晨1点都会出现若干次的业务操作失败,而数据库监控上并没有发现明显的异常。
在该分析服务的日志中发现了某个数据库操作产生了 SocketTimeoutException

开发同学一开始希望通过调整 MongoDB Java Driver 的超时参数来规避这个问题。
但经过详细分析之后,这样是无法根治问题的,而且超时配置应该如何调整也难以评估。

下面是关于对这个问题的分析、调优的过程。

初步分析

从出错的信息上看,是数据库的操作响应超时了,此时客户端配置的 SocketReadTimeout 为 60s。
那么,是什么操作会导致数据库 60s 还没能返回呢?

业务操作

MongoDB 谨防索引seek的效率问题

左边的数据库是一个工单数据表(t_work_order),其中记录了每张工单的信息,包括工单编号(oid)、最后修改时间(lastModifiedTime)
分析服务是Java实现的一个应用程序,在每天凌晨1:00 会拉取出前一天修改的工单信息(要求按工单号排序)进行处理。
由于工单表非常大(千万级),所以在处理时会采用分页的做法(每次取1000条),使用按工单号翻页的方式:

  • 第一次拉取
db.t_work_order.find({
   "lastModifiedTime":{
      $gt: new Date("2019-04-09T09:44:57.106Z"),
      $lt: new Date("2019-04-09T10:44:57.106Z")}, 
   "oid": {$exists: true}})
   .sort({"oid":1}).limit(1000)

代码100分

  • 第二次拉取,以第一次拉取的最后一条记录的工单号作为起点
代码100分db.t_work_order.find({
   "lastModifiedTime":{
      $gt: new Date("2019-04-09T09:44:57.106Z"),
      $lt: new Date("2019-04-09T10:44:57.106Z")}, 
   "oid": {$exists: true, $gt: "VXZ190"}})
   .sort({"oid":1}).limit(1000)

..

根据这样的查询,开发人员给数据表使用的索引如下:

db.t_work_order.ensureIndexes({
   "oid" : 1,
   "lastModifiedTime" : -1
})

尽管该索引与查询字段基本是匹配的,但在实际执行时却表现出很低的效率:
第一次拉取时间非常的长,经常超过60s导致报错,而后面的拉取时间则会快一些

为了精确的模拟该场景,我们在测试环境中预置了小部分数据,对拉取记录的SQL执行Explain:

代码100分db.t_work_order.find({
   "lastModifiedTime":{
      $gt: new Date("2019-04-09T09:44:57.106Z"),
      $lt: new Date("2019-04-09T10:44:57.106Z")}
   "oid": {$exists: true}})
   .sort({"oid":1}).limit(1000)
   .explain("executionStats")

输出结果如下

"nReturned" : 1000,
"executionTimeMillis" : 589,
"totalKeysExamined" : 136661,
"totalDocsExamined" : 1000,

...

"indexBounds" : {
    "oid" : [ 
        "[MinKey, MaxKey]"
    ],
    "lastModifiedTime" : [ 
        "(new Date(1554806697106), new Date(1554803097106))"
    ]
},
"keysExamined" : 136661,
"seeks" : 135662,

在执行过程中发现,检索1000条记录,居然需要扫描 13.6 W条索引项!
其中,几乎所有的开销都花费在了 一个seeks操作上了。

索引seeks的原因

官方文档对于 seeks 的解释如下:
The number of times that we had to seek the index cursor to a new position in order to complete the index scan.

翻译过来就是:
seeks 是指为了完成索引扫描(stage),执行器必须将游标定位到新位置的次数。

我们都知道 MongoDB 的索引是B+树的实现(3.x以上),对于连续的叶子节点扫描来说是非常快的(只需要一次寻址),那么seeks操作太多则表示整个扫描过程中出现了大量的寻址(跳过非目标节点)。
而且,这个seeks指标是在3.4版本支持的,因此可以推测该操作对性能是存在影响的。

为了探究 seeks 是怎么产生的,我们对查询语句尝试做了一些变更:

去掉 exists 条件

exists 条件的存在是因为历史问题(一些旧记录并不包含工单号的字段),为了检查exists查询是否为关键问题,修改如下:

db.t_work_order.find({
   "lastModifiedTime":{
      $gt: new Date("2019-04-09T09:44:57.106Z"),
      $lt: new Date("2019-04-09T10:44:57.106Z")}
   })
   .sort({"oid":1}).limit(1000)
   .explain("executionStats")

执行后的结果为:

"nReturned" : 1000,
"executionTimeMillis" : 1533,
"totalKeysExamined" : 272322,
"totalDocsExamined" : 272322,
  
...

"inputStage" : {
  "stage" : "FETCH",
  "filter" : {
      "$and" : [ 
          {
              "lastModifiedTime" : {
                  "$lt" : ISODate("2019-04-09T10:44:57.106Z")
              }
          }, 
          {
              "lastModifiedTime" : {
                  "$gt" : ISODate("2019-04-09T09:44:57.106Z")
              }
          }
      ]
}, 

...

"indexBounds" : {
    "oid" : [ 
        "[MinKey, MaxKey]"
    ],
    "lastModifiedTime" : [ 
        "[MaxKey, MinKey]"
    ]
},
"keysExamined" : 272322,
"seeks" : 1,

这里发现,去掉 exists 之后,seeks 变成了1次,但整个查询扫描了 27.2W 条索引项! 刚好是去掉之前的2倍。
seeks 变为1次说明已经使用了叶节点顺序扫描的方式,然而由于扫描范围非常大,为了找到目标记录,会执行顺序扫描并过滤大量不符合条件的记录
在 FETCH 阶段出现了 filter可说明这一点。与此同时,我们检查了数据表的特征:同一个工单号是存在两条记录的!于是可以说明:

  • 在存在exists查询条件时,执行器会选择按工单号进行seeks跳跃式检索,如下图:

MongoDB 谨防索引seek的效率问题

  • 在不存在exists条件的情况下,执行器选择了叶节点顺序扫描的方式,如下图:

MongoDB 谨防索引seek的效率问题

gt 条件和反序

除了第一次查询之外,我们对后续的分页查询也进行了分析,如下:

db.t_work_order.find({
   "lastModifiedTime":{
      $gt: new Date("2019-04-09T09:44:57.106Z"),
      $lt: new Date("2019-04-09T10:44:57.106Z")}, 
   "oid": {$exists: true, $gt: "VXZ190"}})
   .sort({"oid":1}).limit(1000)
   .explain("executionStats")

上面的语句中,主要是增加了$gt: “VXZ190”这一个条件,执行过程如下:

"nReturned" : 1000,
"executionTimeMillis" : 6,
"totalKeysExamined" : 1004,
"totalDocsExamined" : 1000,

...

"indexBounds" : {
    "oid" : [ 
        "("VXZ190", {})"
    ],
    "lastModifiedTime" : [ 
        "(new Date(1554806697106), new Date(1554803097106))"
    ]
},
"keysExamined" : 1004,
"seeks" : 5,

可以发现,seeks的数量非常少,而且检索过程只扫描了1004条记录,效率是很高的。
那么,是不是意味着在后面的数据中,满足查询的条件的记录非常密集呢?

为了验证这一点,我们将一开始第一次分页的查询做一下调整,改为按工单号降序的方式(从后往前扫描):

db.t_work_order.find({
   "lastModifiedTime":{
      $gt: new Date("2019-04-09T09:44:57.106Z"),
      $lt: new Date("2019-04-09T10:44:57.106Z")}, 
   "oid": {$exists: true}})
   .sort({"oid":-1}).limit(1000)
   .explain("executionStats")

新的”反序查询语句”的执行过程如下:

"nReturned" : 1000,
"executionTimeMillis" : 6,
"totalKeysExamined" : 1001,
"totalDocsExamined" : 1000,

...

"direction" : "backward",
"indexBounds" : {
    "oid" : [ 
        "[MaxKey, MinKey]"
    ],
    "lastModifiedTime" : [ 
        "(new Date(1554803097106), new Date(1554806697106))"
    ]
},
"keysExamined" : 1001,
"seeks" : 2,

可以看到,执行的效率更高了,几乎不需要什么 seeks 操作!
经过一番确认后,我们获知了在所有数据的分布中,工单号越大的记录其更新时间值也越大,基本上我们想查询的目标数据都集中在尾端

于是就会出现一开始提到的,第一次查询非常慢甚至超时,而后面的查询就快了。

上面提到的两个查询执行路线如图所示:

  • 加入$gt 条件,从中间开始检索

MongoDB 谨防索引seek的效率问题

  • 反序,从后面开始检索

MongoDB 谨防索引seek的效率问题

优化思路

通过分析,我们知道了问题的症结在于索引的扫描范围过大,那么如何优化,以避免扫描大量记录呢?
从现有的索引及条件来看,由于同时存在gt、exists以及叶子节点的时间范围限定,不可避免的会产生seeks操作,
而且查询的性能是不稳定的,跟数据分布、具体查询条件都有很大的关系
于是一开始所提到的仅仅是增加 socketTimeout 的阈值可能只是治标不治本,一旦数据的索引值分布变化或者数据量持续增大,可能会发生更严重的事情。

回到一开始的需求场景,定时器要求读取每天更新的工单(按工单号排序),再进行分批处理
那么,按照化零为整的思路,新增一个lastModifiedDay字段,这个存储的就是lastModifiedTime对应的日期值(低位取整),这样在同一天内更新的工单记录都有同样的值。

建立组合索引 {lastModifiedDay:1, oid:1},相应的查询条件改为:

{
  "lastModifiedDay": new Date("2019-04-09 00:00:00.000"),
  "oid": {$gt: "VXZ190"}
}  
-- limit 1000

执行结果如下:

"nReturned" : 1000,
"executionTimeMillis" : 6,
"totalKeysExamined" : 1000,
"totalDocsExamined" : 1000,

...

"indexBounds" : {
    "lastModifiedDay" : [ 
        "(new Date(1554803000000), new Date(1554803000000))"
    ],
    "oid" : [ 
        "("VXZ190", {})"
    ]
},
"keysExamined" : 1000,
"seeks" : 1,

这样优化之后,每次查询最多只扫描1000条记录,查询速度是非常快的!

小结

本质上,这就是一种空间换时间的方法,即通过存储一个额外的索引字段来加速查询,通过增加少量的存储开销提升了整体的效能。
在对于许多问题进行优化时,经常是需要从应用场景触发,适当的转换思路。
比如在本文的问题中,是不是一定要增加字段呢?如果业务上可以接受不按工单号排序进行读取,那么仅使用更新时间字段进行分页拉取也是可以达到效果的,具体还是要由业务场景来定。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/11058.html

(0)
上一篇 2022-12-17
下一篇 2022-12-17

相关推荐

  • redis怎么实现分布式缓存_分布式缓存异常

    redis怎么实现分布式缓存_分布式缓存异常发布和订阅模式(Pub/Sub)是构建企业级 .NET 应用程序不可或缺的工具。Pub/Sub 是一种消息传递范式,消息的发送方(发布者)不知道目标接收方(订阅者)的任何信息。此外,发布者和订阅者之间

    2023-05-31
    140
  • Python中的is 9.0操作符:用于检查对象是否为同一个内存地址

    Python中的is 9.0操作符:用于检查对象是否为同一个内存地址Python中的is操作符可以用于检查两个对象是否指向同一块内存空间。is操作符的作用是比较两个对象在内存中的地址是否相同,而不是比较它们的值是否相等。因此,is操作符比==操作符更为严格。

    2024-01-21
    102
  • 金蝶s-hr cloud_金蝶kis专业版数据库在哪看

    金蝶s-hr cloud_金蝶kis专业版数据库在哪看1. 简介 企业或用户将数据中心部署在线下,采用独立软件提供商(Independent Software Vendor)软件进行管理。线下数据运维成本较高,故障容灾单一化,是目前遇到的瓶颈。采用云上…

    2023-03-20
    180
  • 使用conda添加源的方法

    使用conda添加源的方法conda是一个跨平台Python包管理器,可以帮助用户创建和管理不同的Python环境,并能够方便地在不同的环境中安装、更新和卸载Python包。

    2024-08-09
    33
  • 优化Python代码的技巧:使用assertion

    优化Python代码的技巧:使用assertion在Python中,assertion是一种用于检测代码中特定条件是否为真的工具。它通常用来检查代码是否正确地执行了预期的操作,以及数据是否具有正确类型和已赋正确值。assertion是一种被广泛使用的调试技术,特别适用于需要快速理解代码中的问题所在的情况。

    2024-02-13
    103
  • Python列表求平均值

    Python列表求平均值在Python编程中,要对列表进行统计分析时,求整个列表的平均值是常见需求。平均值是指一组数据中所有数据之和除以数据个数的结果,是评价一组数据中值的集中程度和代表水平的指标之一。本文将详细介绍Python列表求平均值的方法和函数。

    2024-07-26
    40
  • mysql安装及使用教程_安装应用程序

    mysql安装及使用教程_安装应用程序【目录】 1、将MySQL服务 制作成windows服务 2、设置密码 3、忘记密码(激活成功教程密码) 【Windows系统】 1、将MySQL服务 制作成windows服务(即 可以开机自启动) 补充:c

    2023-02-24
    149
  • Mybatis——动态sql+字符串匹配导致的判断问题

    Mybatis——动态sql+字符串匹配导致的判断问题在mybatis的学习中,狂神建议字符串匹配直接将模糊匹配的符号放在字符串中,如:匹配’keWord’,那么实际所使用的参数应该为’%keyWord%’ map.put(“keyWord”,”%” …

    2023-04-03
    148

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注