flinksql原理_flink sql解析流程

flinksql原理_flink sql解析流程在Flink SQL中, 元数据的管理分为三层: catalog-> database-> table, 我们知道Flink SQL是依托calcite框架来进行SQL执行

FlinkSQL源码阅读-schema管理

在Flink SQL中, 元数据的管理分为三层: catalog-> database-> table,
我们知道Flink SQL是依托calcite框架来进行SQL执行树生产,校验,优化等等, 所以本文讲介绍FlinkSQL是如何来结合Calcite来进行元数据管理的.

calcite开放的接口

public interface Schema {
    Table getTable(String name);

    Schema getSubSchema(String name);

    ....
}

代码100分

如接口所示, Schema接口,可以通过table名来获得一张表, 可以通过schema名来获得一个子schema.

代码100分public interface Table {
    RelDataType getRowType(RelDataTypeFactory typeFactory);
    ....
}

看Table的接口, 主要就是返回table的RelDataType.

Flink的相关实现

接下来,我们来看下Flink是如何实现这些接口的:

public class CatalogManagerCalciteSchema extends FlinkSchema {
	@Override
	public Schema getSubSchema(String schemaName) {
		if (catalogManager.schemaExists(name)) {
			return new CatalogCalciteSchema(name, catalogManager, isStreamingMode);
		} else {
			return null;
		}
	}
}

代码100分public class CatalogCalciteSchema extends FlinkSchema {
    @Override
    public Schema getSubSchema(String schemaName) {
        if (catalogManager.schemaExists(catalogName, schemaName)) {
            return new DatabasecalciteSchema(schemaName, catalogNmae, catalogManager, isStreamingMode);
        }
    }
}
public class DatabaseCalciteSchema extends FlinkSchema {
    private final String databaseName;
    private final String catalogName;
    private final CatalogManager catalogManager;

    @Override
    public Table getTable(String tableName) {
		ObjectIdentifier identifier = ObjectIdentifier.of(catalogName, databaseName, tableName);
		return catalogManager.getTable(identifier)
			.map(result -> {
				CatalogBaseTable table = result.getTable();
				FlinkStatistic statistic = getStatistic(result.isTemporary(), table, identifier);
				return new CatalogSchemaTable(identifier,
					table,
					statistic,
					catalogManager.getCatalog(catalogName)
						.flatMap(Catalog::getTableFactory)
						.orElse(null),
					isStreamingMode,
					result.isTemporary());
			})
			.orElse(null);
    }

    @Override
    public Schema getSubSchema(String name) {
        return null;
    }
}

很容易发现,CatalogSchema返回DatabaseSchema, DatabaseSchema返回Table,
这样就容易理解,Flink的三层结构是怎样的了. 同时, 具体的元数据实际上都是在catalogManager中。

DatabaseSchema中返回的Table类型为CatalogSchemaTable,我们来看下具体的结结构是怎样的,
上文中也提到了,Table接口主为getRowType函数, 用于返回某个table的type信息。
TableSchema是Flink内部用于保存各个字段的类型信息的类, 通过相关的转化函数,转换为calcite的type类型.

public class CatalogSchemaTable extends AbstractTable implements TemporalTable {
    
	private final ObjectIdentifier tableIdentifier;
	private final CatalogBaseTable catalogBaseTable;
	private final FlinkStatistic statistic;
	private final boolean isStreamingMode;
	private final boolean isTemporary;
    ...
	private static RelDataType getRowType(RelDataTypeFactory typeFactory,
			CatalogBaseTable catalogBaseTable,
			boolean isStreamingMode) {
		final FlinkTypeFactory flinkTypeFactory = (FlinkTypeFactory) typeFactory;
		TableSchema tableSchema = catalogBaseTable.getSchema();
		final DataType[] fieldDataTypes = tableSchema.getFieldDataTypes();
		if (!isStreamingMode
			&& catalogBaseTable instanceof ConnectorCatalogTable
			&& ((ConnectorCatalogTable) catalogBaseTable).getTableSource().isPresent()) {
			// If the table source is bounded, materialize the time attributes to normal TIMESTAMP type.
			// Now for ConnectorCatalogTable, there is no way to
			// deduce if it is bounded in the table environment, so the data types in TableSchema
			// always patched with TimeAttribute.
			// See ConnectorCatalogTable#calculateSourceSchema
			// for details.

			// Remove the patched time attributes type to let the TableSourceTable handle it.
			// We should remove this logic if the isBatch flag in ConnectorCatalogTable is fixed.
			// TODO: Fix FLINK-14844.
			for (int i = 0; i < fieldDataTypes.length; i++) {
				LogicalType lt = fieldDataTypes[i].getLogicalType();
				if (lt instanceof TimestampType
					&& (((TimestampType) lt).getKind() == TimestampKind.PROCTIME
					|| ((TimestampType) lt).getKind() == TimestampKind.ROWTIME)) {
					int precision = ((TimestampType) lt).getPrecision();
					fieldDataTypes[i] = DataTypes.TIMESTAMP(precision);
				}
			}
		}
		return TableSourceUtil.getSourceRowType(flinkTypeFactory,
			tableSchema,
			scala.Option.empty(),
			isStreamingMode);
	}
}

CatalogBaseTable接口定义如下, Flink的Table的参数(schema参数,connector参数)都可以最终表示为一个map.

public interface CatalogBaseTable {
	/**
	 * Get the properties of the table.
	 *
	 * @return property map of the table/view
	 */
	Map<String, String> getProperties();

	/**
	 * Get the schema of the table.
	 *
	 * @return schema of the table/view.
	 */
	TableSchema getSchema();

	/**
	 * Get comment of the table or view.
	 *
	 * @return comment of the table/view.
	 */
	String getComment();

	/**
	 * Get a deep copy of the CatalogBaseTable instance.
	 *
	 * @return a copy of the CatalogBaseTable instance
	 */
	CatalogBaseTable copy();

	/**
	 * Get a brief description of the table or view.
	 *
	 * @return an optional short description of the table/view
	 */
	Optional<String> getDescription();

	/**
	 * Get a detailed description of the table or view.
	 *
	 * @return an optional long description of the table/view
	 */
	Optional<String> getDetailedDescription();
}

FlinkSchema的使用

上面都是的相关接口都是Flink用于适配calcite框架元数据的相关实现。
那么这些类具体是在哪里调用的? 已经什么时候会被调用到?
calcite中的schema,主要是在validate过程中, 获得对应table的字段信息, 对应的function的返回值信息,
确保SQL的字段名, 字段类型是正确的.
类的依赖关系为:
validator —> schemaReader —> schema

FlinkPlannerImpl.scala中

  private def createSqlValidator(catalogReader: CatalogReader) = {
    val validator = new FlinkCalciteSqlValidator(
      operatorTable,
      catalogReader,
      typeFactory)
    validator.setIdentifierExpansion(true)
    // Disable implicit type coercion for now.
    validator.setEnableTypeCoercion(false)
    validator
  }

PlanningConfigurationBuilder.java

	private CatalogReader createCatalogReader(
			boolean lenientCaseSensitivity,
			String currentCatalog,
			String currentDatabase) {
		SqlParser.Config sqlParserConfig = getSqlParserConfig();
		final boolean caseSensitive;
		if (lenientCaseSensitivity) {
			caseSensitive = false;
		} else {
			caseSensitive = sqlParserConfig.caseSensitive();
		}

		SqlParser.Config parserConfig = SqlParser.configBuilder(sqlParserConfig)
			.setCaseSensitive(caseSensitive)
			.build();

		return new CatalogReader(
			rootSchema,
			asList(
				asList(currentCatalog, currentDatabase),
				singletonList(currentCatalog)
			),
			typeFactory,
			CalciteConfig.connectionConfig(parserConfig));
	}

综上所诉, 我们就知道了Flink是如何来利用calcite的schema来管理Flink的table信息的.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/7765.html

(0)
上一篇 2023-03-14 15:00
下一篇 2023-03-14

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注