大家好,我是考100分的小小码 ,祝大家学习进步,加薪顺利呀。今天说一说SparkStreaming两种方式连接Flume,希望您对编程的造诣更进一步.
SparkStreaming 连接Flume的两种方式分别为:Push(推)和Pull(拉)的方式实现,以Spark Streaming的角度来看,Push方式属于推送(由Flume向Spark推送数据);而Pull属于拉取(Spark 拉取 Flume的输出数据);
Flume向SparkStreaming推送数据没有研究明白,有大佬指点一下吗?
万分感谢!
1.Spark拉取Flume数据:
导入两个jar包到flume/lib下
否则抛出这两个异常:
org.apache.flume.FlumeException: Unable to load sink type: org.apache.spark.streaming.flume.sink.SparkSink, class: org.apache.spark.streaming.flume.sink.SparkSink
java.lang.IllegalStateException: begin() called when transaction is OPEN!
2.编写flume 工作文件:
a1.sources = r1 a1.sinks = k1 a1.channels = c1 # source a1.sources.r1.type=spooldir a1.sources.r1.spoolDir=/home/zhuzhu/apps/flumeSpooding a1.sources.r1.fileHeader=true # Describe the sink a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink # 当前主机端口 a1.sinks.k1.hostname = 192.168.137.88 a1.sinks.k1.port = 9999 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
3.编写SparkStreaming程序:
package day02 import java.net.InetSocketAddress import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream} import org.apache.spark.streaming.flume.{FlumeUtils, SparkFlumeEvent} import org.apache.spark.{SparkConf, SparkContext} /** * @ClassName: StreamingFlume * @Description TODO 实时监控flume,统计flume数据产生,是Spark * @Author: Charon * @Date: 2021/4/7 13:19 * @Version 1.0 **/ object StreamingFlume { def main(args: Array[String]): Unit = { //1.创建SparkConf对象 val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("StreamingFlume") //2.创建SparkContext对象 val sc = new SparkContext(conf) //设置日志输出格式,只打印异常日志,在这里设置没有用 //sc.setLogLevel("WARN") //3.创建StreamingContext,Seconds(5):轮询机制,多久执行一次 val ssc = new StreamingContext(sc, Seconds(5)) //4.定义一个flume集合,可以接受多个flume数据,多个用,隔开需要new val addresses = Seq(new InetSocketAddress("127.0.0.1", 5555)) //5.获取flume中的数据, val stream: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createPollingStream(ssc, addresses, StorageLevel.MEMORY_AND_DISK_2) // 6.截取flume数据:{"header":xxxxx "body":xxxxxx} val lineDstream: DStream[String] = stream.map(x => new String(x.event.getBody.array())) lineDstream.flatMap(x=>x.split(" ")).map(x=>(x,1)).reduceByKey(_+_).print() ssc.start() ssc.awaitTermination() } }
4。开启flume监控文件,开启SparkStreaming程序:
向指定目录上传文件
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/6420.html