华为认证高斯数据库_华为libra数据库

华为认证高斯数据库_华为libra数据库摘要:在KV数据库领域,“强一致性”不仅是一个技术名词,它更是业务与运维的重要需求。 本文分享自华为云社区《华为云PB级数据库GaussDB(for Redis)揭秘第七期:高斯Redis与强一致》…

华为云PB级数据库GaussDB(for Redis)揭秘第七期:高斯Redis与强一致

摘要:在KV数据库领域,“强一致性”不仅是一个技术名词,它更是业务与运维的重要需求。

本文分享自华为云社区《华为云PB级数据库GaussDB(for Redis)揭秘第七期:高斯Redis与强一致》,原文作者:高斯Redis官方博客。

清明刚过,五一假期就要来了。大好春光,不如去婺源看油菜花吧!小云迅速打开APP刷出余票2张,赶紧下单!唉,怎么又没抢到!转念一想倒也能理解:从勾选乘车人到正式下单,起码要10秒,真若是“见者有份”,恐怕这两个座位大家要挤挤共用了!每逢节假日,全国几百万小伙伴同时查票订票,12306是如何保证余票显示准、车票不超卖的?

于是,按捺不住好奇心,笔者进行了一番深入研究。原来,问题背后隐藏着一个分布式数据库领域极其关键的技术——数据强一致性保障

1. 什么是强一致?

在介绍概念之前,我们不妨先来模拟一场球赛直播。

华为认证高斯数据库_华为libra数据库

假设笔者做了一款APP,后台使用上图的主从数据库。比分写入主节点,从节点分担用户查询。比赛中,Alice惊呼比赛结束,Bob闻声刷新APP,却显示比赛仍在继续!Bob体验到了明显的数据不一致,于是默默给APP打了个差评……

那么,产生不一致的原因究竟是什么?

华为认证高斯数据库_华为libra数据库

异步复制时,主节点不等待从节点写入就直接返回了。由于网络延迟等原因,从节点无法保证更新时间。Alice和Bob明明在同时同地查询同一系统,得到正确结果却有先有后。其实这就是典型的弱一致性。

实际上,为解决单点故障、增强吞吐性能,分布式数据库内部都会对同一份数据进行复制,把冗余副本分散保存到不同节点上。简单的异步复制只能构建出弱一致系统,很难满足业务要求。

那么,究竟什么样的一致性才靠谱?有哪些类别?下面我们就来认识这个神秘家族!

1.1 强一致性/线性一致性(Linearizability)

华为认证高斯数据库_华为libra数据库

一致性的最高标准,实现难度最高。核心要求是:一旦写操作完成,随后任意客户端的查询都必须返回这一新值。以下图为例,一旦“写入b”完成,必须保证读到b。而写入过程中,认为值的跳变可能发生在某一瞬间,因此读到a或b都是可能的。

华为认证高斯数据库_华为libra数据库

从业务角度来说,强一致性带来的体验简直可以用丝滑来形容!因为它内部的数据“仿佛”只有一份,即使并发访问不同节点,每个操作也都能原子有序。正因如此,强一致数据库在业务架构中往往被用在关键位置。

etcd是强一致俱乐部里的元老。它基于Raft共识算法,真正实现了强一致,也因此在Leader选举、服务发现等场景起到重要作用。GaussDB(for Redis)作为一款分布式云数据库,凭借多年潜心打磨,也是强一致的代言人。

1.2 顺序一致性(Sequential Consistency)

华为认证高斯数据库_华为libra数据库

弱于线性一致,不保证操作的全局时序,但保证每个客户端操作能按顺序被执行。下图中,A先写x=10,后写x=20;B先写x=99,后写x=999。当C读取时,顺序一致性保证了10先于20被读到、99先于999被读到。

华为认证高斯数据库_华为libra数据库

Zookeeper基于ZAB协议,所有写操作都经由主节点协调,实现了顺序一致性。

1.3 因果一致性(Causal Consistency)

华为认证高斯数据库_华为libra数据库

进一步放宽要求,只对并发访问中具有因果关系的操作保序。例如:

华为认证高斯数据库_华为libra数据库

A写入3,B读到后乘以100再更新它。在这个场景下,由于“A写入3”与“B写入300”有着明确因果关系,因果一致性保证300晚于3被读到。

因果一致性多用于各种博客的评论系统、社交软件等。自然,我们回复某条评论的内容,不应早于评论本身被显示出来。

1.4 最终一致性(Eventual Consistency)

华为认证高斯数据库_华为libra数据库

停止写入并等待一段时间,最终所有客户端都能读到相同的新数据,但具体时限不作保证。许多分布式数据库满足最终一致性,如MySQL主从集群等。

然而,这其实是一个非常弱的保证。由于不确定系统内部过多久才能收敛一致,在此之前,用户随时可能体验到数据不一致。因此最终一致性有天然的局限性,经常会给业务逻辑带来混乱。

1.5 弱一致性(Weak Consistency)

华为认证高斯数据库_华为libra数据库

说它最为“厚脸皮”也不为过,因为它连数据写入后将来被读到都不能保证!弱一致性实现技术门槛低,应用场景也不多。严格来说,单纯的开源Redis主从集群就属于这一类别。

OK,一致性家族的各位成员已经跟大家打过照面。显然,一致性越强的数据库系统,能够支撑的业务场景越多。有的业务同学小声说,强一致技术再牛,可我业务简单,不用也没关系吧。实际上恰恰相反:

强一致不仅仅是技术问题,它更是一个不可忽视的业务需求、运维需求!

接下来我们就先来聊一聊:业务上那些只有强一致才能搞定的事儿!

2 强一致是业务刚需

2.1 计数器/限流器

计数服务是典型的强一致应用场景。电商在秒杀活动中,往往会搭建Redis主从集群给下层MySQL做缓存。因为要抗住超大流量,需要Redis的计数器功能做限流。简单讲,我们初始化counter=5000。随后每次业务访问都执行DECR命令,当counter归零就阻塞后续请求。此外,每隔一个时间段重置counter=5000,通过这样的手段来实现“细水长流”。

然而,完美的假设还不够!

华为认证高斯数据库_华为libra数据库

开源Redis采用异步复制,如遇网络不畅,经常发生主节点复制buffer堆积。这将导致从节点counter偏大很多。此时,一旦主节点宕机,切换到从节点继续执行DECR命令,压力很容易超出阈值,全部落到下层脆弱的MySQL,随时可能引起系统雪崩!

因此,在限流场景下,只有真正的强一致才能提供可靠的计数器。

2.2 Leader选举

当业务部署的节点较多、可用性要求高时,往往要用到Leader选举。etcd作为强一致KV存储,能完美cover这一场景。etcd依赖两大功能实现Leader选举:

1)TTL:给key设置有效期,到期后key自动删除。

2)CAS:对key的原子操作。(这一功能只有强一致数据库才能实现)

使用etcd搭建Leader选举服务的设计如下:

1)约定key,用于选举时抢占。其value用于保存Leader节点名称。

2)约定TTL,用于给key设定有效期。

3)启动时:每个参与节点尝试cas create key&设置TTL。在etcd集群强一致CAS机制保障下,只有一个节点能执行成功。该节点成为Leader并将名称写入value;其余节点成为Follower。

4)运行中:每个节点定期TTL/2尝试get key,将value与自身名称对比:

  • 如相同,说明已是Leader,此后只需每隔TTL/2刷新key的TTL即可。
  • 如不同,说明是Follower,接下来要每隔TTL/2执行cas create key&设置TTL。

5)当Leader节点异常退出,无法刷新TTL,key会很快过期。此时,其余Follow之中便会有新的Leader产生。

从原理上能看出,强一致能力是Leader选举的根基。类似的“刚需”业务场景还有很多,强一致不可或缺。

好了,业务上的事儿就聊到这里,接下来让我们听听运维怎么说。

3. 强一致为运维减负

3.1 辅助组件架构复杂、问题难定位

后台架构中,MySQL主从热备也是常见的部署方式。由于数据保存在本地磁盘中,当主库发生严重故障,仅仅依靠MySQL自身同步机制,主从切换后无法保证所提供数据与之前状态完全一致。于是出现了“重量级”的辅助组件——MHA(Master High Availability)。我们来看一下它的部署方式:

华为认证高斯数据库_华为libra数据库

MHA负责在故障转移过程中,帮助从库尽量追平主库最新状态,提供近似一致的数据。但这一能力需要额外的Manager节点,同时还要在每一个MySQL节点上部署Node服务。故障切换时,Manager先为从库补充落后的数据,再通过切换VIP恢复用户访问,过程可能长达数十秒。

这样的HA系统部署和后期维护都很复杂。如未能顺利执行故障切换或发生数据丢失,运维面临的场面都将很棘手。其实运维同学何尝不希望手中的系统稳定运行呢?要是数据库自身能提供强一致保障,何苦再依赖复杂的辅助组件!

读到这里,对强一致的看法,相信各位读者心里已经有了自己的一杆秤。让我们再一次划重点:强一致不仅仅是技术问题,它更是一个不可忽视的业务需求、运维需求!

从产品选型角度出发,开源Redis提供的一致性保证很弱。而etcd虽有强一致能力,但它单点写入性能不足,也未能提供hash、sorted set、stream等诱人的数据结构……纠结!

此时,有追求的读者会说——我全都要!

GaussDB(for Redis)应声而起——我,可以。

4. GaussDB(for Redis)与强一致

自设计之初,GaussDB(for Redis)(后文简称高斯Redis)给自己的定位就是“强一致KV数据库”,因此彻底摒弃了开源Redis的异步复制机制。借助华为云GaussDB系列先进的“存算分离”架构,将全量数据下沉到强一致存储层(DFV Pool),从核心技术上超越了传统开源产品的极限。

让我们来一起认识一下高斯Redis的强悍:

华为认证高斯数据库_华为libra数据库

· 用户购买的实例作为一个整体,提供强一致KV存储。

用户业务统一通过Proxy集群接入高斯Redis,不用考虑内部复杂逻辑。多点并发访问实例,读写操作满足强一致性,再也不必担心开源Redis异步复制的不一致隐患。

· 计算层智能处理数据分片、动态故障转移,将数据全量下沉到共享存储池。

cfgsvr集群统一管理ShardServer节点,自动对海量数据进行分片。并能够在故障场景实现秒级接管,严格防止任何中间态下的数据不一致。

· 存储层通过RDMA高速网络实现高性能分布式数据持久化,三副本冗余保证强一致、零丢失。

DFV Pool是强一致、高性能的分布式存储系统。这是华为内部自研的公司级Data Lake,它能够稳定支撑各类全栈数据服务。高斯Redis突破了开源Redis“小格局”的内存架构,将数据全量下沉,基于DFV Pool强大的一致性保障能力,给用户业务带来更广阔的拓展空间。

5. 结语

试想,当处在关键位置的数据库“不给力”,业务层就要忙于为系统添加复杂、易出错的一致性保障逻辑。与此同时,运维还要时刻担心故障引发的数据落后问题……这样的系统真的“香”吗?

专业的事情交给专业的团队来做!

华为云NoSQL航道旗舰——GaussDB(for Redis)自研发初期就持续关注数据强一致性设计。借助GaussDB系列先进的强一致存储池DFV Pool,GaussDB(for Redis)始终如一,为用户提供真正强一致的海量KV存储解决方案。

6. 附录

本文作者:华为云高斯Redis团队

杭州西安深圳简历投递:yuwenlong4@huawei.com

更多技术文章,关注高斯Redis官方博客:https://bbs.huaweicloud.com/community/usersnew/id_1614151726110813

 

 

点击关注,第一时间了解华为云新鲜技术~

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/6384.html

(0)
上一篇 2023-04-11
下一篇 2023-04-11

相关推荐

  • 动手分析SQL Server中的事务中使用的锁[亲测有效]

    动手分析SQL Server中的事务中使用的锁[亲测有效]本文属于基础知识的回顾,在日常技术交流和日常工作中经常发现有些同事了解关于数据库事务的基本知识,会看SQL语句的执行计划,也知道数据库有X锁、U锁和S锁等各种锁,但是对于这些锁在数据库事务执行期间是如

    2023-06-01
    143
  • Oracle学习笔记十八:PL/SQL变量类型

    Oracle学习笔记十八:PL/SQL变量类型一、PL/SQL运算符 类型 符号 说明 赋值运算符 := Java 和 C# 中都是等号,PL/SQL 的赋值是 := 特殊字符 || 字符串连接操作符 — PL/SQL 中的单行注释 /*,*/

    2023-05-20
    138
  • 袋鼠云 数据可视化_袋鼠云享

    袋鼠云 数据可视化_袋鼠云享最近,我们袋鼠云的UED部⻔小伙伴们,不声不响地⼲了⼀件⼤事——升级了全新设计语言「数栈UI5.0」。 众所周知,用户在使用产品时,是一个动态的过程,用户和产品之间进行交互的可用性,能否让用户愉悦、快

    2023-06-15
    164
  • 利用Python实现字符串翻转

    利用Python实现字符串翻转在程序设计中,字符串是一个常见的数据结构。有时候我们需要处理字符串,并将其反转,使用反转后的字符串得到新的结果。

    2024-04-29
    63
  • mysql索引原理面试_mysql表建立索引

    mysql索引原理面试_mysql表建立索引定义 索引(Index)是帮助MySQL高效获取数据的数据结构。那么什么数据结构可以用来高效的获取数据呢? 查看索引 mysql> show index from user; +——-+–…

    2023-02-21
    147
  • Python面向对象编程中的方法(Method)

    Python面向对象编程中的方法(Method)普通方法是类中最常见的方法,它是类中的实例方法。普通方法的第一个参数是self,代表该方法所属的实例对象。在普通方法中可以访问对象的属性,并且可以调用其他的类方法或普通方法。下面是一个简单的例子:

    2023-12-12
    90
  • ifnot中心的Python工程师

    ifnot中心的Python工程师Python是一种简单、易学、代码优美、注重可读性、适用性广泛的动态高级语言。自从Guido van Rossum发明了Python,并于1991年首次发布以来,已经成为全球最受欢迎的编程语言之一。

    2024-05-23
    65
  • 大数据hadoop入门教程_大数据 hadoop

    大数据hadoop入门教程_大数据 hadoop1 hadoop-最全最完整的保姆级的java大数据学习资料 大数据技术解决的是什么问题? 大数据技术解决的主要是海量数据的存储和计算。 Hadoop的广义和狭义之分 狭义的Hadoop:指的是一个框

    2023-06-18
    157

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注