时序数据库druid_时序数据库网站

时序数据库druid_时序数据库网站一 了解InfluxDB的必要性 时序数据库主要存放的数据 Time series data is a series of data points each associated with a spe

时序数据库InfluxDB的基本语法

一 了解InfluxDB的必要性

时序数据库主要存放的数据

Time series data is a series of data points each associated with a specific time. Examples include:

  • Server performance metrics
  • Financial averages over time
  • Sensor data, such as temperature, barometric pressure, wind speeds, etc.

时序数据库和关系数据库的区别

Relational databases can be used to store and analyze time series data, but depending on the precision of your data, a query can involve potentially millions of rows. InfluxDB is purpose-built to store and query data by time, providing out-of-the-box functionality that optionally downsamples data after a specific age and a query engine optimized for time-based data.

二 基本概念

2.1 database & duration

database

A logical container for users, retention policies, continuous queries, and time series data.

duration

The attribute of the retention policy that determines how long InfluxDB stores data. Data older than the duration are automatically dropped from the database. 

2.2 field

The key-value pair in an InfluxDB data structure that records metadata and the actual data value. Fields are required in InfluxDB data structures and they are not indexed – queries on field values scan all points that match the specified time range and, as a result, are not performant relative to tags.

Field keys are strings and they store metadata.Field values are the actual data; they can be strings, floats, integers, or booleans. A field value is always associated with a timestamp.

2.3 Tags

Tags are optional. The key-value pair in the InfluxDB data structure that records metadata.You don’t need to have tags in your data structure, but it’s generally a good idea to make use of them because, unlike fields, tags are indexed. This means that queries on tags are faster and that tags are ideal for storing commonly-queried metadata.

Tags 与  fields 的区别

Tags are indexed and fields are not indexed. This means that queries on tags are more performant than those on fields.

Tags 与  fields 的使用场景

(1)Store commonly-queried meta data in tags

(2)Store data in tags if you plan to use them with the InfluxQL GROUP BY clause

(3)Store data in fields if you plan to use them with an InfluxQL function

(4)Store numeric values as fields (tag values only support string values)

2.4 measurement 

The measurement acts as a container for tags, fields, and the time column, and the measurement name is the description of the data that are stored in the associated fields. Measurement names are strings, and, for any SQL users out there, a measurement is conceptually similar to a table.

2.5 point

In InfluxDB, a point represents a single data record, similar to a row in a SQL database table. Each point:

  • has a measurement, a tag set, a field key, a field value, and a timestamp;
  • is uniquely identified by its series and timestamp.

You cannot store more than one point with the same timestamp in a series. If you write a point to a series with a timestamp that matches an existing point, the field set becomes a union of the old and new field set, and any ties go to the new field set.

2.6 series

In InfluxDB, a series is a collection of points that share a measurement, tag set, and field key. A point represents a single data record that has four components: a measurement, tag set, field set, and a timestamp. A point is uniquely identified by its series and timestamp.

series key

A series key identifies a particular series by measurement, tag set, and field key.

三 查询

3.1 正则模糊查询

1.实现查询以给定字段开始的数据

select fieldName from measurementName where fieldName=~/^给定字段/

2.实现查询以给定字段结束的数据

select fieldName from measurementName where fieldName=~/给定字段$/

3.实现查询包含给定字段数据

select fieldName from measurementName where fieldName=~/给定字段/

3.2 Select 注意事项:

必须包含field key

A query requires at least one field key in the SELECT clause to return data. If the SELECT clause only includes a single tag key or several tag keys, the query returns an empty response. This behavior is a result of how the system stores data.

3.3 Where 限定

使用单引号,否则无数据返回或报错

(1)Single quote string field values in the WHERE clause. Queries with unquoted string field values or double quoted string field values will not return any data and, in most cases,will not return an error.

(2)Single quote tag values in the WHERE clause. Queries with unquoted tag values or double quoted tag values will not return any data and, in most cases, will not return an error.

3.4 Group By 

(1)Note that the GROUP BY clause must come after the WHERE clause.

(2)The GROUP BY clause groups query results by:  one or more specified tags ;specified time interval。

(3)You cannot use GROUP BY to group fields.

(4)fill() changes the value reported for time intervals that have no data.

By default, a GROUP BY time() interval with no data reports null as its value in the output column. fill() changes the value reported for time intervals that have no data. Note that fill() must go at the end of the GROUP BY clause if you’reGROUP(ing) BY several things (for example, both tags and a time interval).

3.5 ORDER BY time DESC

By default, InfluxDB returns results in ascending time order; the first point returned has the oldest timestamp and the last point returned has the most recent timestamp.ORDER BY time DESC reverses that order such that InfluxDB returns the points with the most recent timestamps first.

注意:ORDER by time DESC must appear after the GROUP BY clause if the query includes a GROUP BY clause. ORDER by time DESC must appear after the WHERE clause if the query includes a WHERE clause and no GROUP BY clause.

四.SHOW CARDINALITY

是用于估计或精确计算measurement、序列、tag key、tag value和field key的基数的一组命令。

SHOW CARDINALITY命令有两种可用的版本:估计和精确。估计值使用草图进行计算,对于所有基数大小来说,这是一个安全默认值。精确值是直接对TSM(Time-Structured Merge Tree)数据进行计数,但是,对于基数大的数据来说,运行成本很高。

下面以tag key、tag value为例。

4.1 SHOW TAG KEY CARDINALITY

估计或精确计算tag key集的基数。

ON <database>、FROM <sources>、WITH KEY = <key>、WHERE <condition>、GROUP BY <dimensions>和LIMIT/OFFSET子句是可选的。当使用这些查询子句时,查询将回退到精确计数(exect count)。当启用Time Series Index(TSI)时,才支持对time进行过滤。不支持在WHERE子句中使用time。

举例:

-- show estimated tag key cardinality
SHOW TAG KEY CARDINALITY

----计算精确值
-- show exact tag key cardinality SHOW TAG KEY EXACT CARDINALITY

4.2 SHOW TAG VALUES CARDINALITY

估计或精确计算指定tag key对应的tag value的基数。

ON <database>、FROM <sources>、WITH KEY = <key>、WHERE <condition>、GROUP BY <dimensions>和LIMIT/OFFSET子句是可选的。当使用这些查询子句时,查询将回退到精确计数(exect count)。当启用Time Series Index(TSI)时,才支持对time进行过滤。

举例

-- show estimated tag key values cardinality for a specified tag key
SHOW TAG VALUES CARDINALITY WITH KEY = "myTagKey"

-- show estimated tag key values cardinality for a specified tag key
SHOW TAG VALUES CARDINALITY WITH KEY = "myTagKey"

-----计算精确值
-- show exact tag key values cardinality for a specified tag key SHOW TAG VALUES EXACT CARDINALITY WITH KEY = "myTagKey" -- show exact tag key values cardinality for a specified tag key SHOW TAG VALUES EXACT CARDINALITY WITH KEY = "myTagKey"

4.3 应用场景举例

例如,前面的分享,我们通过Telegraf 将server的监控数据保存到了InfluxDB中,其中CPU指标是必不可少的(telegraf.conf 设置)。假如有一天,我们需要统计telegraf一共部署了多少台。其实就可以通过SHOW TAG VALUES EXACT CARDINALITY 获得。

SQL 语句如下:

SHOW TAG VALUES EXACT CARDINALITY from "cpu" WITH KEY = "host"

即查看cpu 中 host 的key值有多少个。因为通过telegraf.conf的设置,一台Server 对应一个唯一的host值,host值有多少个,就有多少台Server已部署了telegraf。

5 Drop 与 Delete

5.1 series

The DROP SERIES query deletes all points from a series in a database, and it drops the series from the index.

The query takes the following form, where you must specify either the FROM clause or the WHERE clause.

语法如下:

DROP SERIES FROM <measurement_name[,measurement_name]> WHERE <tag_key>="<tag_value>"

A successful DROP SERIES query returns an empty result.

Drop all points in the series that have a specific tag pair from all measurements in the database(即,如不指定from,将会把符合条件的所有表tag数据删除).

与Delete series  的区别是:

The DELETE query deletes all points from a series in a database. UnlikeDROP SERIESDELETE does not drop the series from the index.

5.2 measurement_name

DELETE FROM <measurement_name> WHERE [<tag_key>="<tag_value>"] | [<time interval>]

只允许根据tag和时间来进行删除操作.

measurement的drop,是比较消耗资源的,并且操作时间相对较长。看有网友的分享,建议 在 drop measurement 之前先删除所有的 tag。

即先执行:

DROP SERIES FROM "measurement_name"

然后再执行:

drop measurement <measurement_name>

六 常用函数部分

 常用函数汇总如下:

类型 函数名 备注说明1 备注说明2
聚合类 COUNT() Returns the number of non-null field values.  
DISTINCT() Returns the list of unique field values. DISTINCT() often returns several results with the same timestamp; InfluxDB assumes points with the same series and timestamp are duplicate points and simply overwrites any duplicate point with the most recent point in the destination measurement.
INTEGRAL() Returns the area under the curve for subsequent field values. InfluxDB calculates the area under the curve for subsequent field values and converts those results into the summed area per unit. The unit argument is an integer followed by a duration literal and it is optional. If the query does not specify the unit, the unit defaults to one second (1s).
MEAN() Returns the arithmetic mean (average) of field values.  
MEDIAN() Returns the middle value from a sorted list of field values. MEDIAN() is nearly equivalent to  PERCENTILE(field_key, 50),  except MEDIAN() returns the average of the two middle field values if the field contains an even number of values.
MODE() Returns the most frequent value in a list of field values.  MODE() returns the field value with the earliest timestamp if there’s a tie between two or more values for the maximum number of occurrences.
SPREAD() Returns the difference between the minimum and maximum field values.  
STDDEV() Returns the standard deviation of field values.  
SUM() Returns the sum of field values.  
查询选择类 BOTTOM() Returns the smallest N field values. BOTTOM() returns the field value with the earliest timestamp if there’s a tie between two or more values for the smallest value.
FIRST() Returns the field value with the oldest timestamp.  
LAST() Returns the field value with the most recent timestamp.  
MAX() Returns the greatest field value.  
MIN() Returns the lowest field value.  
PERCENTILE() Returns the Nth percentile field value.  
SAMPLE() Returns a random sample of N field values. SAMPLE() uses reservoir sampling to generate the random points.
TOP() Returns the greatest N field values. TOP() returns the field value with the earliest timestamp if there’s a tie between two or more values for the greatest value.
转换类 ABS() Returns the absolute value of the field value.  
ACOS() Returns the arccosine (in radians) of the field value. Field values must be between -1 and 1.
ASIN() Returns the arcsine (in radians) of the field value. Field values must be between -1 and 1.
ATAN() Returns the arctangent (in radians) of the field value. Field values must be between -1 and 1.
ATAN2() Returns the the arctangent of y/x in radians.  
CEIL() Returns the subsequent value rounded up to the nearest integer.  
COS() Returns the cosine of the field value.  
CUMULATIVE_SUM() Returns the running total of subsequent field values.  
DERIVATIVE() Returns the rate of change between subsequent field values. InfluxDB calculates the difference between subsequent field values and converts those results into the rate of change per unit. The unit argument is an integer followed by a duration literal and it is optional. If the query does not specify the unit the unit defaults to one second (1s).
DIFFERENCE() Returns the result of subtraction between subsequent field values.  
ELAPSED() Returns the difference between subsequent field value’s timestamps. InfluxDB calculates the difference between subsequent timestamps. The unit option is an integer followed by a duration literal and it determines the unit of the returned difference. If the query does not specify the unit option the query returns the difference between timestamps in nanoseconds.
EXP() Returns the exponential of the field value.  
FLOOR() Returns the subsequent value rounded down to the nearest integer.  
LN() Returns the natural logarithm of the field value.   
LOG() Returns the logarithm of the field value with base b  
LOG2() Returns the logarithm of the field value to the base 2.  
LOG10() Returns the logarithm of the field value to the base 10.  
MOVING_AVERAGE() Returns the rolling average across a window of subsequent field values.  
POW() Returns the field value to the power of x  
ROUND() Returns the subsequent value rounded to the nearest integer.  
SIN() Returns the sine of the field value.  
SQRT() Returns the square root of field value.  
TAN() Returns the tangent of the field value.  
推测类 HOLT_WINTERS() Returns N number of predicted field values  

Predict when data values will cross a given threshold;

Compare predicted values with actual values to detect anomalies in your data.

技术分析类 CHANDE_MOMENTUM_OSCILLATOR()   The Chande Momentum Oscillator (CMO) is a technical momentum indicator developed by Tushar Chande. The CMO indicator is created by calculating the difference between the sum of all recent higher data points and the sum of all recent lower data points, then dividing the result by the sum of all data movement over a given time period. The result is multiplied by 100 to give the -100 to +100 range.
EXPONENTIAL_MOVING_AVERAGE()   An exponential moving average (EMA) is a type of moving average that is similar to a simple moving average, except that more weight is given to the latest data. It’s also known as the “exponentially weighted moving average.” This type of moving average reacts faster to recent data changes than a simple moving average.
DOUBLE_EXPONENTIAL_MOVING_AVERAGE()   The Double Exponential Moving Average (DEMA) attempts to remove the inherent lag associated to Moving Averages by placing more weight on recent values. The name suggests this is achieved by applying a double exponential smoothing which is not the case. The name double comes from the fact that the value of an EMA is doubled. To keep it in line with the actual data and to remove the lag, the value “EMA of EMA” is subtracted from the previously doubled EMA.
KAUFMANS_EFFICIENCY_RATIO()   Kaufman’s Efficiency Ration, or simply “Efficiency Ratio” (ER), is calculated by dividing the data change over a period by the absolute sum of the data movements that occurred to achieve that change. The resulting ratio ranges between 0 and 1 with higher values representing a more efficient or trending market.

The ER is very similar to the Chande Momentum Oscillator (CMO). The difference is that the CMO takes market direction into account, but if you take the absolute CMO and divide by 100, you you get the Efficiency Ratio.

KAUFMANS_ADAPTIVE_MOVING_AVERAGE()   Kaufman’s Adaptive Moving Average (KAMA) is a moving average designed to account for sample noise or volatility. KAMA will closely follow data points when the data swings are relatively small and noise is low. KAMA will adjust when the data swings widen and follow data from a greater distance. This trend-following indicator can be used to identify the overall trend, time turning points and filter data movements.
TRIPLE_EXPONENTIAL_MOVING_AVERAGE()   The triple exponential moving average (TEMA) was developed to filter out volatility from conventional moving averages. While the name implies that it’s a triple exponential smoothing, it’s actually a composite of a single exponential moving average, a double exponential moving average, and a triple exponential moving average.
TRIPLE_EXPONENTIAL_DERIVATIVE()   The triple exponential derivative indicator, commonly referred to as “TRIX,” is an oscillator used to identify oversold and overbought markets, and can also be used as a momentum indicator. TRIX calculates a triple exponential moving average of the log of the data input over the period of time. The previous value is subtracted from the previous value. This prevents cycles that are shorter than the defined period from being considered by the indicator.

Like many oscillators, TRIX oscillates around a zero line. When used as an oscillator, a positive value indicates an overbought market while a negative value indicates an oversold market. When used as a momentum indicator, a positive value suggests momentum is increasing while a negative value suggests momentum is decreasing. Many analysts believe that when the TRIX crosses above the zero line it gives a buy signal, and when it closes below the zero line, it gives a sell signal.

RELATIVE_STRENGTH_INDEX()   The relative strength index (RSI) is a momentum indicator that compares the magnitude of recent increases and decreases over a specified time period to measure speed and change of data movements.

 

参考网址:

https://blog.csdn.net/xuxiannian/article/details/103559246

https://blog.csdn.net/funnyPython/article/details/89888972

https://docs.influxdata.com/influxdb/v1.8/query_language/explore-data/
https://docs.influxdata.com/influxdb/v1.8/query_language/manage-database/#drop-series-from-the-index-with-drop-series
https://docs.influxdata.com/influxdb/v1.8/query_language/functions/
 
https://help.aliyun.com/document_detail/113127.html?spm=5176.21213303.J_6704733920.12.345d3eda8r81jQ&scm=20140722.S_help%40%40%E6%96%87%E6%A1%A3%40%40113127.S_0%2Bos.ID_113127-RL_show%20tag%20values-OR_helpmain-V_2-P0_1

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/5782.html

(0)
上一篇 2023-04-25
下一篇 2023-04-25

相关推荐

  • [Raft共识算法] Dragonboat Log Replication 代码走读

    [Raft共识算法] Dragonboat Log Replication 代码走读Dragonboat Log Replication 代码走读 Dragonboat 是一个开源的高性能Go实现的Raft共识协议实现. 具有良好的性能和久经社区检验的鲁棒性, 机遇巧合, 接触到.

    2023-06-10
    136
  • 如何在PyCharm中配置解释器

    如何在PyCharm中配置解释器Python是一种简单易学的编程语言,它在许多领域都有着广泛的应用,因此,Python编译器也很流行。当前最流行的Python编译器是PyCharm,它是由JetBrains公司开发的一款跨平台的集成开发环境(IDE),对Python语言开发非常友好。

    2024-06-21
    41
  • redis速度慢_数据库性能慢了

    redis速度慢_数据库性能慢了本篇为Redis性能问题诊断系列的第四篇,也是最后一篇,主要从应用程序、系统、服务器硬件及网络系统等层面上进行讲解,重点分享了哪些配置需要重点关注和调整优化,才能最大程度的发挥Redis的处理能力;

    2023-06-06
    147
  • 数据库学习之十三:mysql高可用配置

    数据库学习之十三:mysql高可用配置十三、mysql高可用 1、普通主从复制架构存在的不足 高可用? 业务不间断的工作。 用户的体验不出来业务断点。 普通主从环境,存在的问题: 2、企业高可用解决方案: MMM(过时) MHA(目前推荐

    2023-02-26
    145
  • mysql备份数据导入_MySQL导出表

    mysql备份数据导入_MySQL导出表简介 mydumper 是一款开源的 MySQL 逻辑备份工具,主要由 C 语言编写。与 MySQL 自带的 mysqldump 类似,但是 mydumper 更快更高效。 mydumper 的一些优

    2023-05-13
    152
  • Mysql explain 各参数详解「建议收藏」

    Mysql explain 各参数详解「建议收藏」MySQLEXPLAIN命令是查询性能优化不可缺少的一部分,本文主要讲解explain命令的使用及相关参数说明。 id序号 select_type simple:即简单select 查询,不包含un…

    2023-01-28
    160
  • 数栈优化案例:物流客户Elasticsearch集群性能优化

    数栈优化案例:物流客户Elasticsearch集群性能优化本文整理自:袋鼠云技术荟 | 某物流客户Elasticsearch集群性能优化案例 数栈是云原生—站式数据中台PaaS,我们在github和gitee上有一个有趣的开源项目:FlinkX,Flink…

    2023-04-13
    161
  • 聊聊流计算系统中的核心问题:状态管理[通俗易懂]

    聊聊流计算系统中的核心问题:状态管理[通俗易懂]本文选自《实时流计算系统设计与实现》 文末有惊喜 状态管理是流计算系统的核心问题之一。在实现流数据的关联操作时,流计算系统需要先将窗口内的数据临时保存起来,然后在窗口结束时,再对窗口内的数据做关联计算

    2023-02-25
    152

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注