localthread用法_速度是位移的导数

localthread用法_速度是位移的导数1. LOAD DATA INFILE 为什么比 INSERT 快?
2. sysbench 压测 MySQL 的四个标准步骤。
3. 怎么让 sysbench 支持 LOAD DATA LOCAL

使用 LOAD DATA LOCAL INFILE,sysbench 导数速度提升30%

最近给 sysbench 提了一个 feature(https://github.com/akopytov/sysbench/pull/450),支持通过 LOAD DATA LOCAL INFILE 命令导入压测数据。

下面我们来具体看看这个 feature 的使用方法和实现细节。

 

下载安装

下载支持 LOAD DATA LOCAL INFILE 命令的 sysbench 分支。

# yum -y install make automake libtool pkgconfig libaio-devel openssl-devel mysql-devel 
# cd /usr/src/
# git clone https://github.com/slowtech/sysbench.git --branch feature-load-data
# cd sysbench/
# ./autogen.sh
# ./configure
# make -j
# make install

安装完成后,压测脚本默认会安装在 /usr/local/share/sysbench 目录下。

 

我们看看该目录的内容。

# ls /usr/local/share/sysbench/
bulk_insert.lua  oltp_delete.lua  oltp_point_select.lua  oltp_read_write.lua    oltp_update_non_index.lua  select_random_points.lua  tests
oltp_common.lua  oltp_insert.lua  oltp_read_only.lua     oltp_update_index.lua  oltp_write_only.lua        select_random_ranges.lua

除了oltp_common.lua是个公共模块,其它每个lua脚本都对应一个测试场景。

 

使用方法

使用方法和 master 分支基本一致,主要是在 prepare 阶段新增了两个参数。

下面,我们看看 sysbench 压测 MySQL 的四个标准步骤:

1. prepare

生成压测数据。

sysbench oltp_read_write --mysql-host=10.0.20.4 --mysql-port=3306 --mysql-user=root --mysql-password=123456 --mysql-db=sbtest --tables=10 --table-size=1000000 --threads=10 --fast --csv-dir=/data/sysbench prepare

其中,

  • –tables :表的数量,默认是1。

  • –table-size :单表的大小,默认是10000。

  • –threads :并发线程数,默认是1。注意,导入时,单表只能使用一个线程。

  • oltp_read_write:脚本名。对应的是/usr/local/share/sysbench/oltp_read_write.lua。

    这里也可指定脚本的绝对路径。

 

除此之外,这里还指定了新增的两个参数:

  • –fast:通过 LOAD DATA LOCAL INFILE 命令导入数据。不指定,则默认是使用 INSERT 命令导入数据。

  • –csv-dir:CSV 文件的存储路径。不指定,则默认是 /tmp。

 

如果使用的是 MySQL 8.0,在操作之前,需将 local_infile 设置为 ON,

否则,客户端在执行 LOAD DATA LOCAL INFILE 时会提示以下错误:

ERROR 3948 (42000): Loading local data is disabled; this must be enabled on both the client and server sides

在 MySQL 5.6,5.7 中无需修改,该参数默认为 OFF。

 

最后,再来说说测试场景。

oltp_read_write 用来压测 OLTP 场景。

在 sysbench 1.0 之前, 该场景是通过 oltp.lua 这个脚本来测试的。

不过该脚本在 sysbench 1.0 之后被废弃了,为了跟之前的版本兼容,该脚本放到了 /usr/local/share/sysbench/tests/include/oltp_legacy/ 目录下。

鉴于 oltp_read_write.lua 和 oltp.lua 两者的压测内容完全一致。

从 sysbench 1.0 开始,压测 OLTP 建议直接使用 oltp_read_write。

 

2. prewarm

预热。

主要是将磁盘中的数据加载到内存中。

sysbench oltp_read_write --mysql-host=10.0.20.4 --mysql-port=3306 --mysql-user=root --mysql-password=123456 --mysql-db=sbtest --tables=10 --table-size=1000000 --threads=10 prewarm

 

3. run

压测。

sysbench oltp_read_write --mysql-host=10.0.20.4 --mysql-port=3306 --mysql-user=root --mysql-password=123456 --mysql-db=sbtest --tables=10 --table-size=1000000 --threads=10 --time=600 --report-interval=10 run

其中,

  • –time :压测时间,不指定,则默认是10s。
  • –report-interval=10 :每10s输出一次压测结果,默认为0,不输出。

 

4. cleanup

清理数据。

sysbench oltp_read_write --mysql-host=10.0.20.4 --mysql-port=3306 --mysql-user=root --mysql-password=123456 --mysql-db=sbtest --tables=10 cleanup

这里只需指定 –tables ,sysbench 会串行执行 DROP TABLE IF EXISTS sbtest 操作。

 

导入速度对比

下面对比了不同 tables(表的数量),table_size(表的大小),threads (并发线程数)下,LOAD 和 INSERT 操作所需的时间。

每个配置都会测试三次,LOAD 和 INSERT 操作交叉执行。

测试过程中,设置了 –create_secondary=false,不会创建二级索引,所以这里衡量的只是导入时间。

测试实例是甲骨文云上的 MDS (MySQL Database Service)。

配置相当强悍:16 OCPU(OCPU 是物理 CPU 核数,对应的逻辑 CPU 是 32 核),512G 内存,高性能块存储。

在测试的过程中,为了减轻磁盘 IO 的影响,将 sync_binlog 调整为了0。

下面我们看看测试结果。

+--------+------------+---------+---------------+-----------------+-------------------------------+
| tables | table_size | threads | load_avg_time | insert_avg_time | load_avg_time/insert_avg_time |
+--------+------------+---------+---------------+-----------------+-------------------------------+
|      1 |   10000000 |       1 |         58.03 |           82.95 |                          0.70 |
|      2 |   10000000 |       1 |        117.52 |          169.00 |                          0.70 |
|      2 |   10000000 |       2 |         68.85 |          100.60 |                          0.68 |
|      5 |   10000000 |       1 |        299.60 |          438.74 |                          0.68 |
|      5 |   10000000 |       2 |        197.91 |          286.54 |                          0.69 |
|      5 |   10000000 |       5 |         86.36 |          119.60 |                          0.72 |
|     10 |   10000000 |       1 |        605.15 |          881.70 |                          0.69 |
|     10 |   10000000 |       2 |        364.71 |          521.02 |                          0.70 |
|     10 |   10000000 |       5 |        175.49 |          247.98 |                          0.71 |
|     10 |   10000000 |      10 |        111.43 |          162.84 |                          0.68 |
|     20 |   10000000 |       1 |       1242.61 |         1775.17 |                          0.70 |
|     20 |   10000000 |       2 |        755.31 |         1034.03 |                          0.73 |
|     20 |   10000000 |       5 |        357.45 |          520.80 |                          0.69 |
|     20 |   10000000 |      10 |        228.05 |          333.27 |                          0.68 |
|     20 |   10000000 |      20 |        194.97 |          299.55 |                          0.65 |
|     30 |   10000000 |       1 |       1901.68 |         2826.83 |                          0.67 |
|     30 |   10000000 |       2 |       1134.81 |         1574.98 |                          0.72 |
|     30 |   10000000 |       5 |        542.96 |          771.31 |                          0.70 |
|     30 |   10000000 |      10 |        347.53 |          515.04 |                          0.67 |
|     30 |   10000000 |      20 |        302.60 |          475.71 |                          0.64 |
|     30 |   10000000 |      30 |        320.94 |          453.42 |                          0.71 |
+--------+------------+---------+---------------+-----------------+-------------------------------+

结果中,

load_avg_time 是 LOAD 命令的平均执行时间。

insert_avg_time 是 INSERT 命令的平均执行时间。

最后一列是两者的比值。

可以看到,相同配置下,LOAD 命令的平均执行时间只有 INSERT 的 70% 。

 

下面,我们看看 tables = 30, table_size = 10000000 时,命令的执行时间与并发线程数之间的关系。

localthread用法_速度是位移的导数 

可以看到,

并发数小于等于 5 时,随着并发线程数的增加,导入时间基本上是同比例下降。

当并发数超过 10 时,增加并发数带来的收益并不明显,甚至,LOAD 命令在 30 线程下的导入时间比 20 线程还高。

 

实现细节

主要修改了两个文件:

oltp_common.lua

lua 脚本的公共模块文件,位于源码包的 src/lua 目录下。

prepare的处理逻辑就是在这个文件中定义的。

我们直接看看新增代码的逻辑。

local f
-- 如果命令行中指定了 --fast,则打开一个文件。
if (sysbench.opt.fast) then
    f = assert(io.open(string.format("/%s/sbtest%d",sysbench.opt.csv_dir,table_num),"w"))
end

for i = 1, sysbench.opt.table_size do

   c_val = get_c_value()
   pad_val = get_pad_value()

   if (sysbench.opt.auto_inc) then
      if (sysbench.opt.fast) then
         -- 构造字符串,字段与字段之间用逗号隔开,
是换行符。
         query = string.format("%d,%s,%s
",
                            sysbench.rand.default(1, sysbench.opt.table_size),
                            c_val, pad_val)
      else
         query = string.format("(%d, "%s", "%s")",
                            sysbench.rand.default(1, sysbench.opt.table_size),
                            c_val, pad_val)

      end
   else
      if (sysbench.opt.fast) then
         query = string.format("%d,%d,%s,%s
",
                            i,
                            sysbench.rand.default(1, sysbench.opt.table_size),
                            c_val, pad_val)
      else
         query = string.format("(%d, %d, "%s", "%s")",
                            i,
                            sysbench.rand.default(1, sysbench.opt.table_size),
                            c_val, pad_val)
      end
   end
   -- 将构造的字符串写入到文件中
   if (sysbench.opt.fast) then
       f:write(query)
   else
      con:bulk_insert_next(query)
   end

end

if (sysbench.opt.fast) then

    f:close()
    local column_name
    if (sysbench.opt.auto_inc) then
        column_name="k, c, pad"
    else
        column_name="id, k, c, pad"
    end
    -- 通过 LOAD DATA LOCAL INFILE 命令导入数据
    query = string.format("LOAD DATA LOCAL INFILE "/%s/sbtest%d" " ..
                             "INTO TABLE sbtest%d FIELDS TERMINATED BY "," LINES TERMINATED BY "\n" " ..
                              "(%s)", sysbench.opt.csv_dir,table_num,table_num,column_name)
    -- 为了提升导入速度,这里在会话级别禁用了 unique_checks 和 foreign_key_checks
    con:query("SET unique_checks = 0")
    con:query("SET foreign_key_checks = 0")
    con:query(query)
else
    con:bulk_insert_done()
end

 

drv_mysql.c

MySQL 驱动文件,位于源码包的 src/drivers/mysql 目录下。

 

在 MySQL 8.0 中,即使将服务端的 local_infile 设置为 ON,通过 mysql 客户端执行 LOAD DATA LOCAL INFILE 时,还是会报错。

mysql> LOAD DATA LOCAL INFILE "/data/sysbench/sbtest1" INTO TABLE sbtest1 FIELDS TERMINATED BY "," LINES TERMINATED BY "
" (k, c, pad);
ERROR 2068 (HY000): LOAD DATA LOCAL INFILE file request rejected due to restrictions on access.

解决方法:

将 mysql 客户端的 local-infile 设置为 ON。

# mysql --local-infile=on

但在 sysbench 的 MySQL 驱动文件中,却没有这个选项。

好在 sysbench 使用的也是 C API,我们可以直接通过 mysql_options() 函数开启MYSQL_OPT_LOCAL_INFILE。

if (args.use_local_infile)
{
  DEBUG("mysql_options(%p, %s, %d)",con, "MYSQL_OPT_LOCAL_INFILE", args.use_local_infile);
  mysql_options(con, MYSQL_OPT_LOCAL_INFILE, &args.use_local_infile);
}

 

为什么 LOAD DATA INFILE 快?

LOAD DATA INFILE 之所以比 INSERT 快,主要原因有以下几点:

  1. 无需解析 SQL 语句。

  2. 一次会读取多个数据块。

  3. 对于空表,操作期间会禁用所有非唯一索引。

  4. 存储引擎会先缓存一些数据,达到一定数量后才批量插入( MyISAM 和 Aria 存储引擎支持该行为)。

  5. 对于空表,某些事务引擎(如 Aria)不会在事务日志中记录插入的数据。

    为什么不用记录呢?因为如果需要回滚,只需执行 TRUNCATE 操作即可。

这里说的 Aria 是 MariaDB 中的一个存储引擎,主要用来替代 MyISAM 存储引擎。

 

总结

  1. 相同配置下,LOAD 命令的平均执行时间只有 INSERT 的 70% 。

  2. tables 和 table_size 一定时,在一定范围内,增加线程数能显著降低导入时间。

  3. 在实际工作中,如果要导入的 CSV 文件很大,建议使用 MySQL Shell 中的 util.importTable。

    该命令在底层实现上使用的也是 LOAD DATA LOCAL INFILE,只不过它会将单个文件切割成多个 chunk 并行导入。

    相对来说,导入速度更快,也不会产生大事务。

 

参考资料

How to Quickly Insert Data Into MariaDB

原文地址:https://www.cnblogs.com/ivictor/archive/2022/04/07/16110772.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/5392.html

(0)
上一篇 2023-05-11
下一篇 2023-05-11

相关推荐

  • Oracle入门学习一

    Oracle入门学习一oracle的安装,用户授权,表格操作,数据类型,ddl表格,dml数据。 下一篇:Oracle入门学习二 学习视频:https://www.bilibili.com/video/BV1tJ411r7

    2023-02-23
    152
  • 登录 Oracle 数据库 提示密码过期(ORA-28001: the password has expired)问题解决

    登录 Oracle 数据库 提示密码过期(ORA-28001: the password has expired)问题解决Oracle公司为了数据库的安全性在 Oracle11G 中默认了一个新的特性:在创建用户时默认密码过期时间为180天, 即超过180天后用户在未做密码修改操作的情况下做登录数据库操作会提示密码已过…

    2023-01-27
    151
  • 对比索引、视图、游标、存储过程和触发器

    对比索引、视图、游标、存储过程和触发器1、索引 1-1、索引的概述 我们把一个表中的一列或者多列和列中元素所在表中记录的物理地址组合成一个新的表。这个表的记录大致为列的内容和该列所在记录的物理地址。 1-2、索引的优缺点 优点:大大加快了

    2023-02-23
    148
  • mysql入门以及远程访问

    mysql入门以及远程访问
    MySQL 数据库的使用 一、MySQL 简介 1什么是 MySQL MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,目前属于 …

    2023-04-05
    144
  • 建立表的sql命令是什么_为某个数据库创建表

    建立表的sql命令是什么_为某个数据库创建表学习要点 表通过 CREATE TABLE 语句创建而成。 表和列的命名要使用有意义的文字。 指定列的数据类型(整数型、字符型和日期型等)。 可以在表中设置约束(主键约束和 NOT NULL 约束等)

    2023-04-25
    138
  • 使用Python获取上一级目录

    使用Python获取上一级目录在Python编程中,我们常常需要获取文件或目录的路径。获取当前文件或目录的路径非常简单,只要使用Python内置的os模块就可以轻松完成。但是,有时候我们需要获取上一级目录的路径,这个时候就需要使用一些高级的技巧了。本篇文章就将介绍如何使用Python获取上一级目录的路径。

    2024-09-20
    16
  • oracle ocp题库_oracle数据库19c

    oracle ocp题库_oracle数据库19cCUUG已经开始了Oracle OCP 19c的题库解析 继11g和12c之后,OCP 19c考试题库解析已于2020年7月17日在腾讯课堂免费直播,此为国内首家19c的题库解析。 、**、 CUU…

    2023-03-24
    144
  • 前端字体截取

    前端字体截取为什么要截取字体?众所周知,相对于英文字体,中文字体天生是“庞然大物”。英文字体两三百KB已经很大了,而中文字体几MB十几MB都算小的。一方面,中文字体包含的字形数量极多,动辄数以千计甚至万计,而英文

    2023-03-02
    185

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注