大家好,我是考100分的小小码 ,祝大家学习进步,加薪顺利呀。今天说一说python大数据分析包(数据分析常用的python包),希望您对编程的造诣更进一步.
本文目录一览:
- 1、python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码)
- 2、Python中数据可视化经典库有哪些?
- 3、python怎么做大数据分析
- 4、python数据分析需要哪些库?
- 5、Python数据分析库有哪些
- 6、如何用Python分析大数据
python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码)
Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。
Python数据分析与挖掘技术概述
所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。
预先善其事必先利其器
我们首先聊聊数据分析的模块有哪些:
下面就说说这些模块的基础使用。
numpy模块安装与使用
安装:
下载地址是:
我这里下载的包是1.11.3版本,地址是:
下载好后,使用pip install “numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl”
安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy
numpy简单使用
生成随机数
主要使用numpy下的random方法。
pandas
使用 pip install pandas 即可
直接上代码:
下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:
常用方法如下:
下面看看pandas对数据的统计,下面就说说每一行的信息
转置功能:把行数转换为列数,把列数转换为行数,如下所示:
通过pandas导入数据
pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。
CSV文件
csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列
excel表格
依赖于xlrd模块,请安装它。
老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数
读取SQL
依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。
读取HTML
依赖于lxml模块,请安装它。
对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。
读取HTML只会读取HTML里的表格,也就是只读取
显示的是时候是通过python的列表展示,同时添加了行与列的标识
读取txt文件
输出显示的时候同时添加了行与列的标识
scipy
安装方法是先下载whl格式文件,然后通过pip install “包名” 安装。whl包下载地址是:
matplotlib 数据可视化分析
我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。
下面请看代码:
下面说说修改图的样式
关于图形类型,有下面几种:
关于颜色,有下面几种:
关于形状,有下面几种:
我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:
我们还可以画虚线图,代码如下所示:
还可以给图添加上标题,x,y轴的标签,代码如下所示
直方图
利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。
Y轴为出现的次数,X轴为这个数的值(或者是范围)
还可以指定直方图类型通过histtype参数:
图形区别语言无法描述很详细,大家可以自信尝试。
举个例子:
子图功能
什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。
我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:
我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。
先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。
我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。
下面看看代码:
Python中数据可视化经典库有哪些?
Python有很多经典的数据可视化库,比较经典的数据可视化库有下面几个。
matplotlib
是Python编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向应用程序嵌入式绘图提供了应用程序接口。
pyplot 是 matplotlib 的一个模块,它提供了一个类似 MATLAB 的接口。 matplotlib 被设计得用起来像 MATLAB,具有使用 Python 的能力。
优点:绘图质量高,可绘制出版物质量级别的图形。代码够简单,易于理解和扩展,使绘图变得轻松,通过Matplotlib可以很轻松地画一些或简单或复杂的图形,几行代码即可生成直方图、条形图、散点图、密度图等等,最重要的是免费和开源。
pandas
Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。需要说明的是它不是“熊猫”,名字衍生自术语 “panel data”(面板数据)和 “Python data analysis”(Python 数据分析)。
优点:是Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观的处理关系型、标记型数据。对于数据分析专业人士,它是数据分析及可视化的利器。
seaborn
Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。
它是基于matplotlib更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,应该把Seaborn视为matplotlib的补充,而不是替代物,它能高度兼容numpy与pandas数据结构以及scipy与statsmodels等统计模式。
优点:matplotlib高度封装,代码量少,图表漂亮。比起matplotlib具有更美观、更现代的调色板设计等优点。scikit-plot
这是一个跟机器学习有效结合的绘图库。想要深入学习的小伙伴参见其github仓库,这里不再赘述了。
优点:Scikit-Plot是由ReiichiroNakano创建的用在机器学习的可视化工具,能最快速简洁的画出用Matplotlib要写很多行语句才能画出的图。关键是对于机器学习相关可视化处理,该库有较好的支持。
Networkx
networkx是Python的一个包,用于构建和操作复杂的图结构,提供分析图的算法。图是由顶点、边和可选的属性构成的数据结构,顶点表示数据,边是由两个顶点唯一确定的,表示两个顶点之间的关系。顶点和边也可以拥有更多的属性,以存储更多的信息。
优点:用于创建、操纵和研究复杂网络的结构、以及学习复杂网络的结构、功能及其动力学。
上面是我的回答,希望对您有所帮助!
python怎么做大数据分析
数据获取:公开数据、Python爬虫外部数据的获取方式主要有以下两种。(推荐学习:Python视频教程)
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。
另一种获取外部数据的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urlpb、BeautifulSoup、requests、scrapy)实现网页爬虫。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。
数据存取:SQL语言
在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:
提取特定情况下的数据
数据库的增、删、查、改
数据的分组聚合、如何建立多个表之间的联系
数据预处理:Python(pandas)
很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
选择:数据访问
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
异常值处理:清除不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表
概率论及统计学知识
需要掌握的知识点如下:
基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显著性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等
有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。
Python 数据分析
掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。
然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。
你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python怎么做大数据分析的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
python数据分析需要哪些库?
1. NumPy
一般我们会将科学领域的库作为清单打头,NumPy是该领域的主要软件库之一。它旨在处理大型的多维数组和矩阵,并提供了很多高级的数学函数和方法,因此可以用它来执行各种操作。
2. SciPy
另一个科学计算核心库SciPy,基于NumPy而构建,并扩展了NumPy的功能。SciPy的主要数据结构是多维数组,使用Numpy实现。该库提供了一些用于解决线性代数、概率论、积分计算等任务的工具。
3.Pandas
Pandas是一个Python库,提供了高级的数据结构和各种分析工具。该库的一大特色是能够将相当复杂的数据操作转换为一两个命令。Pandas提供了很多内置的方法,用于分组、过滤和组合数据,还提供了时间序列功能。所有这些方法的执行速度都很快。
4. StatsModels
Statsmodels是一个Python模块,为统计数据分析提供了很多可能性,例如统计模型估计、运行统计测试等。你可以借助它来实现很多机器学习方法,并探索不同的绘图可能性。
5. Matplotlib
Matplotlib是一个用于创建二维图表和图形的低级库。你可以用它来构建各种图表,从直方图和散点图到非笛卡尔坐标图。此外,很多流行的绘图库都为Matplotlib预留了位置,可与Matplotlib结合在一起使用。
6. Seaborn
Seaborn实际上是基于matplotlib库构建的高级API。它为处理图表提供了更恰当的默认选项。此外,它还提供了一组丰富的可视化图库,包括时间序列、联合图和小提琴图等复杂的类型。
7. Plotly
Plotly是一个可以帮助你轻松构建复杂图形的流行库。该库适用于交互式Web应用程序,它提供了很多很棒的可视化效果,包括轮廓图形、三元图和3D图表。
8. Bokeh
Bokeh库使用JavaScript小部件在浏览器中创建交互式和可伸缩的可视化图形。该库提供了多种图形、样式、链接图形式的交互能力、添加小部件、定义回调以及更多有用的功能。
9. Pydot
Pydot是一个用于生成面向复杂图形和非面向复杂图形的库。它作为面向Graphviz的一个接口,使用Python编写。我们可以借助它来显示图形的结构,这在构建神经网络和基于决策树的算法时经常会用到。
Python数据分析库有哪些
Python数据分析必备的第三方库:
1、Pandas
Pandas是Python强大、灵活的数据分析和探索工具,包含Serise、DataFrame等高级数据结构和工具,安装Pandas可使Python中处理数据非常快速和简单。
Pandas是Python的一个数据分析包,Pandas最初使用用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了很好的支持。
Pandas是为了解决数据分析任务而创建的,Pandas纳入了大量的库和一些标准的数据模型,提供了高效的操作大型数据集所需要的工具。Pandas提供了大量是我们快速便捷的处理数据的函数和方法。Pandas包含了高级数据结构,以及让数据分析变得快速、简单的工具。
2、Numpy
Numpy可以提供数组支持以及相应的高效处理函数,是Python数据分析的基础,也是Scipy、Pandas等数据处理和科学计算库最基本的函数功能库,且其数据类型对Python数据分析十分有用。
Numpy提供了两种基本的对象:ndarray和ufunc。ndarray是存储单一数据类型的多维数组,而ufunc是能够对数组进行处理的函数。
3、Matplotlib
Matplotlib是强大的数据可视化工具和作图库,是主要用于绘制数据图表的Python库,提供了绘制各类可视化图形的命令字库、简单的接口,可以方便用户轻松掌握图形的格式,绘制各类可视化图形。
Matplotlib是Python的一个可视化模块,他能方便的只做线条图、饼图、柱状图以及其他专业图形。
Matplotlib是基于Numpy的一套Python包,这个包提供了丰富的数据绘图工具,主要用于绘制一些统计图形。
4、SciPy
SciPy是一组专门解决科学计算中各种标准问题域的包的集合,包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算等,这些对数据分析和挖掘十分有用。
SciPy是一款方便、易于使用、专门为科学和工程设计的Python包,它包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等。Scipy依赖于Numpy,并提供许多对用户友好的和有效的数值例程,如数值积分和优化。
5、Keras
Keras是深度学习库,人工神经网络和深度学习模型,基于Theano之上,依赖于Numpy和Scipy,利用它可以搭建普通的神经网络和各种深度学习模型,如语言处理、图像识别、自编码器、循环神经网络、递归审计网络、卷积神经网络等。
6、Scrapy
Scrapy是专门为爬虫而生的工具,具有URL读取、HTML解析、存储数据等功能,可以使用Twisted异步网络库来处理网络通讯,架构清晰,且包含了各种中间件接口,可以灵活的完成各种需求。
7、Gensim
Gensim是用来做文本主题模型的库,常用于处理语言方面的任务,支持TF-IDF、LSA、LDA和Word2Vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算、信息检索等一些常用任务的API接口。
如何用Python分析大数据
毫不夸张地说,大数据已经成为任何商业交流中不可或缺的一部分。桌面和移动搜索向全世界的营销人员和公司以空前的规模提供着数据,并且随着物联网的到来,大量用以消费的数据还会呈指数级增长。这种消费数据对于想要更好地定位目标客户、弄懂人们怎样使用他们的产品或服务,并且通过收集信息来提高利润的公司来说无疑是个金矿。
筛查数据并找到企业真正可以使用的结果的角色落到了软件开发者、数据科学家和统计学家身上。现在有很多工具辅助大数据分析,但最受欢迎的就是Python。
为什么选择Python?
Python最大的优点就是简单易用。这个语言有着直观的语法并且还是个强大的多用途语言。这一点在大数据分析环境中很重要,并且许多企业内部已经在使用Python了,比如Google,YouTube,迪士尼,和索尼梦工厂。还有,Python是开源的,并且有很多用于数据科学的类库。所以,大数据市场急需Python开发者,不是Python开发者的专家也可以以相当块速度学习这门语言,从而最大化用在分析数据上的时间,最小化学习这门语言的时间。
用Python进行数据分析之前,你需要从Continuum.io下载Anaconda。这个包有着在Python中研究数据科学时你可能需要的一切东西。它的缺点是下载和更新都是以一个单元进行的,所以更新单个库很耗时。但这很值得,毕竟它给了你所需的所有工具,所以你不需要纠结。
现在,如果你真的要用Python进行大数据分析的话,毫无疑问你需要成为一个Python开发者。这并不意味着你需要成为这门语言的大师,但你需要了解Python的语法,理解正则表达式,知道什么是元组、字符串、字典、字典推导式、列表和列表推导式——这只是开始。
各种类库
当你掌握了Python的基本知识点后,你需要了解它的有关数据科学的类库是怎样工作的以及哪些是你需要的。其中的要点包括NumPy,一个提供高级数学运算功能的基础类库,SciPy,一个专注于工具和算法的可靠类库,Sci-kit-learn,面向机器学习,还有Pandas,一套提供操作DataFrame功能的工具。
除了类库之外,你也有必要知道Python是没有公认的最好的集成开发环境(IDE)的,R语言也一样。所以说,你需要亲手试试不同的IDE再看看哪个更能满足你的要求。开始时建议使用IPython Notebook,Rodeo和Spyder。和各种各样的IDE一样,Python也提供各种各样的数据可视化库,比如说Pygal,Bokeh和Seaborn。这些数据可视化工具中最必不可少的就是Matplotlib,一个简单且有效的数值绘图类库。
所有的这些库都包括在了Anaconda里面,所以下载了之后,你就可以研究一下看看哪些工具组合更能满足你的需要。用Python进行数据分析时你会犯很多错误,所以得小心一点。一旦你熟悉了安装设置和每种工具后,你会发现Python是目前市面上用于大数据分析的最棒的平台之一。
希望能帮到你!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/23337.html