Python数据挖掘入门指南

Python数据挖掘入门指南近年来,数据挖掘成为了各行业的热门方向,Python语言在数据挖掘领域的应用已经越来越广泛,成为专业人士和研究者们的首选语言之一。

介绍

近年来,数据挖掘成为了各行业的热门方向,Python语言在数据挖掘领域的应用已经越来越广泛,成为专业人士和研究者们的首选语言之一。

Python是一种解释型、面向对象、动态数据类型的高级编程语言,能够快速编写、测试和调试代码,成为了数据科学团队的首选开发语言。本篇文章将通过介绍Python在数据挖掘领域的常用库和实践代码来帮助初学者快速入门。

数据挖掘的常用库

Scikit-learn库

Scikit-learn是一个简单且高效的数据挖掘工具,它建立在NumPy、SciPy和matplotlib之上,具有可读性强、功能强大、易于维护等优点。Scikit-learn库提供了许多流行的数据挖掘算法,包括线性回归、逻辑回归、K-means算法、决策树、支持向量机等等。

Matplotlib库

Matplotlib是Python中的一种绘图库,它可用于生成2D和3D绘图,生成出版质量的图表,包括线图、散点图、条形图、直方图等。Matplotlib库具有高度的可配置性,因此可以满足各种不同的需求。

Pandas库

Pandas是Python中用于数据处理和数据分析的库,支持在数据框中高效地处理大量数据。Pandas库可以让我们轻松地进行数据操作、建立模型、可视化等操作。

Numpy库

Numpy是Python中的一个重要的数值计算库,支持高效的数组数据结构和向量计算。Numpy中包含了很多常用的线性代数和矩阵运算函数,支持高速的数组计算、向量化函数、多维数组操作等等。在数据科学、计算机视觉、自然语言处理等领域中都有广泛的应用。

代码示例

import numpy as np
import pandas as pd
from sklearn.cluster import KMeans

数据挖掘的实践代码

数据预处理

在数据挖掘中,数据预处理是非常重要的一步,它可以良好的准备数据,使它们值得建模。下面是一个简单的数据预处理代码案例。

df=pd.read_csv('data.csv')# 读取数据
df=df.fillna(method='ffill') # 用前一个值填充NaN
df=df.astype(int) # 转换数据类型为整型

K-means算法的实现

K-means是常用于聚类分析的算法,可以根据对象之间的相似度将它们分配到不同的组中。下面是一个简单的K-means实现代码案例。

from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=1000, centers=4, random_state=42) # 创建测试数据
kmeans = KMeans(n_clusters=4, random_state=42) # 创建KMeans对象
pred = kmeans.fit_predict(X) # 拟合并预测数据

模型评估

在数据挖掘中,模型评估是非常重要的一步,只有对模型的性能进行评估和监控,才能进一步的优化它并应用到实际业务中。下面是一个基于交叉验证的模型评估代码案例。

from sklearn.model_selection import KFold,cross_val_score
from sklearn.tree import DecisionTreeClassifier
 
iris = load_iris() # 导入iris数据集
 
X_train, X_test, y_train, y_test = train_test_split(iris.data,
iris.target, test_size=0.2, random_state=42)
 
kfolds = KFold(n_splits=10, shuffle=True, random_state=42)
dtree = DecisionTreeClassifier(max_depth=5, random_state=42)
 
scores = cross_val_score(dtree, iris.data, iris.target, cv=kfolds)
 
print(np.mean(scores))

总结

本篇文章从数据挖掘的常用库、数据预处理、K-means算法的实现以及模型评估等多个方面进行了阐述,希望可以为初学者提供帮助,进一步探索Python在数据挖掘领域的应用。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/21358.html

(0)
上一篇 2024-04-16
下一篇 2024-04-16

相关推荐

  • hdfs上传和下载_hdfs下载文件

    hdfs上传和下载_hdfs下载文件hdfs上传流程 首先客户端向nn请求上传文件、nn经过检查回应客户端是否可以上传、客户端得到同意后向nn请求上传第一块文件的dn、nn返回给客户端dn的地址、客户端与其中一个dn1建立连接然后dn1

    2023-05-08
    107
  • lombok aspectj_lombok data注解

    lombok aspectj_lombok data注解@Accessors Accessor的中文含义是存取器,@Accessors用于配置getter和setter方法的生成结果,下面介绍三个属性 fluent fluent的中文含义是流畅的,设置为…

    2023-03-29
    136
  • laravel 提交表单_laravelapi分页

    laravel 提交表单_laravelapi分页设置路由: use IlluminateSupportFacadesRoute; //设置路由访问控制器只能是get访问 // Route::get(‘/user’,’User@user’); //…

    2023-03-23
    94
  • 20200619 学习笔记[通俗易懂]

    20200619 学习笔记[通俗易懂]主键和唯一的区别 主键:唯一、不为空、只能有一个、可以组合但不推荐 唯一:唯一、可为空、可以多个、可以组合但不推荐 外键 要求在从表设置外键关系 从表的外键列的类型和主表的关联列的类型要求一致或兼容…

    2023-03-14
    105
  • mysql忘记密码怎么办?_忘记密码怎么重新设置

    mysql忘记密码怎么办?_忘记密码怎么重新设置本文主要记录了在忘记密码时怎么办。

    2023-03-17
    106
  • Python单例模式详解

    Python单例模式详解在编写Python程序时,有时需要确保某个类只有一个实例对象,这时就需要用到单例模式。单例模式是一种常用的设计模式,可以保证一个类只有一个实例。本文将详细介绍Python单例模式,包括作用、实现方法和代码实现。

    2024-04-29
    22
  • Python编程:轻松学习打造高效程序

    Python编程:轻松学习打造高效程序Python是一种高级编程语言,因其简单易学、高效、灵活而受到开发者广泛的欢迎。本文将从多个方面,详细阐述Python编程的优点、用法和实战案例,帮助初学者更好地掌握Python编程技术。

    2023-12-20
    62
  • mycat简单使用「建议收藏」

    mycat简单使用「建议收藏」MyCat MyCAT是使用JAVA语言进行编写开发,使用前需要先安装JAVA运行环境(JRE),由于MyCAT中使用了JDK7中的一些特性,所以 要求必须在JDK7以上的版本上运行。 mysql …

    2023-03-28
    116

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注