Python文本挖掘实战

Python文本挖掘实战在当今信息快速发展的时代,随着社交网络、互联网大数据、智能硬件的广泛使用,产生的数据量开始日益庞大。如何从这些数据中找到我们关心的信息,发现并解决问题,这就需要用到文本挖掘。

在当今信息快速发展的时代,随着社交网络、互联网大数据、智能硬件的广泛使用,产生的数据量开始日益庞大。如何从这些数据中找到我们关心的信息,发现并解决问题,这就需要用到文本挖掘。

文本挖掘,又称为知识发掘,是运用自然语言处理、机器学习、数据挖掘等技术,对大规模文本进行分析整理,并从中发现有价值的信息、知识以及预测某些情况的趋势。

随着Python成为数据科学中的主流工具,Python作为一种功能强大的编程语言,提供了许多实用的库和工具,让文本挖掘变得更加容易。这篇文章将介绍Python中的几个常用的文本挖掘库,以及如何使用它们进行文本挖掘实战。

一、预处理文本数据

在进行文本挖掘之前,需要对原始的文本数据进行预处理。这个过程包括词汇分割、停用词过滤、词干提取和词性标注等。

在Python中有一个叫做Natural Language Toolkit(NLTK)的库,提供了很多用于自然语言处理的工具。

下面是一个预处理文本的例子:

 import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize # 定义原始文本 raw_text = "Good morning everyone. Today is a beautiful day. We should enjoy it." # 利用nltk的工具进行预处理 tokens = word_tokenize(raw_text) tokens_without_sw = [word for word in tokens if word not in stopwords.words()] stemmer = nltk.SnowballStemmer('english') stemmed_words = [stemmer.stem(word) for word in tokens_without_sw] 

在这个例子中,我们首先定义了一个原始的文本字符串。然后,使用工具word_tokenize对文本进行分词,得到一个词汇列表。接着,我们从这些词汇中去除了一些停用词,然后对剩余的词进行词干提取,最后得到了一个新的词汇列表。

二、使用NLTK进行情感分析

情感分析是文本挖掘的重要应用之一,它可以分析文本的情感色彩。在Python中,我们可以使用NLTK库进行情感分析。

下面是一个情感分析的例子:

 from nltk.sentiment import SentimentIntensityAnalyzer # 定义文本 text = "I love playing basketball." # 利用SentimentIntensityAnalyzer进行情感分析 sia = SentimentIntensityAnalyzer() sentiment = sia.polarity_scores(text) # 打印情感得分 print(sentiment) 

上述代码定义了一个文本字符串,并使用SentimentIntensityAnalyzer工具进行情感分析。得到的结果是包含四个键值对的字典,分别代表文本的整体情感得分、情感极性、积极情感得分和消极情感得分。

三、使用Scikit-Learn进行文本分类

除了情感分析外,文本分类也是文本挖掘的一个重要应用。Scikit-Learn是Python中一个常用的机器学习库,其中包含了多种经典的文本分类算法。

下面是一个使用Scikit-Learn进行文本分类的例子:

 from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC # 加载数据集 categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics', 'sci.med'] news_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42) news_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42) # 使用TfidfVectorizer将文本转换为向量表示 vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(news_train.data) X_test = vectorizer.transform(news_test.data) # 训练模型 classifier = LinearSVC() classifier.fit(X_train, news_train.target) # 预测测试数据的分类 predicted = classifier.predict(X_test) 

在这个例子中,我们首先使用fetch_20newsgroups方法加载了20个不同主题的文本数据集。然后,使用TfidfVectorizer将文本数据转换成向量形式。最后,使用LinearSVC模型训练和预测分类。

总结

本文介绍了Python中文本挖掘的基本步骤、常用的库和工具,主要包括预处理文本、情感分析和文本分类。

NLTK、Scikit-Learn这两个库,是Python中应用最广泛的文本挖掘库,掌握它们可以让你更轻松地使用Python进行文本挖掘实战。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
转载请注明出处: https://daima100.com/20444.html

(0)
上一篇 2024-06-24
下一篇 2024-06-24

相关推荐

  • expdp 导出UDE-31623 ORA-31623

    expdp 导出UDE-31623 ORA-31623问题描述: ORACLE EXADATA 12.2 4节点 一个简单的expdp导出,在之前是正常的,但是隔了一天后出现问题了,具体报错信息如下: expdp '”/as sysdba”&…

    2022-12-23
    177
  • MySQL 8.0.19客户端的一个小变化

    MySQL 8.0.19客户端的一个小变化本文作者:叶金荣,知数堂联合创始人,MySQL DBA课程讲师。Oracle MySQL ACE,MySQL布道师。有多年MySQL及系统架构设计经验,擅长MySQL企业级应用、数据库设计、优化、故…

    2023-02-11
    123
  • 使用Matplotlib读取数据

    使用Matplotlib读取数据作为数据科学和机器学习的一部分,数据可视化是非常重要的。Matplotlib 是一个可视化工具箱,用于创建出版质量的图形和图表。它可以使用 Python 和 NumPy 数组轻松地绘制图形。在这篇文章中,我们将深入研究如何使用 Matplotlib 读取和可视化数据。

    2024-07-01
    15
  • 云小课|MRS基础原理之Oozie任务调度[通俗易懂]

    云小课|MRS基础原理之Oozie任务调度[通俗易懂]阅识风云是华为云信息大咖,擅长将复杂信息多元化呈现,其出品的一张图(云图说)、深入浅出的博文(云小课)或短视频(云视厅)总有一款能让您快速上手华为云。更多精彩内容请单击此处。 摘要:Oozie是一个基

    2023-06-13
    132
  • MinGW与gdb调试,MinGW中没有gdb.exe解决办法[通俗易懂]

    MinGW与gdb调试,MinGW中没有gdb.exe解决办法[通俗易懂]MinGW(Minamalist GNU For Windows)是个精简的C/C++编译器,它实际上是将经典的开源C语言编译器GCC移植到了Windows下,并且包含了Win32API,因此可以将…

    2023-04-08
    133
  • 论数据库项目的代码组织[通俗易懂]

    论数据库项目的代码组织[通俗易懂]数据库项目的代码组织大致有两种形式:增量式与快照式。 Entity Framework (Core)的数据库迁移工程就是经典的增量式组织形式:有专门的迁移历史表标识增量版本,不同版本之间的升级、降级由

    2023-05-15
    114
  • Python:优化环境变量 Path,提高项目安全性

    Python:优化环境变量 Path,提高项目安全性在操作系统中,环境变量 Path 用来指定搜索可执行文件的路径,也就是说,当执行一个命令或者运行一个程序时,操作系统会在环境变量 Path 中所包含的路径下寻找对应的可执行文件。

    2024-04-05
    45
  • MySQL数据库设计规范

    MySQL数据库设计规范具体 小数类型 // 附录2 6. 【强制】小数类型为 decimal,禁止使用 float 和 double。 说明:在存储的时候,float 和 double 都存在精度损失的问题,很可能在比较…

    2023-03-27
    126

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注